您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版)

• 论文 • 上一篇    下一篇

基于粒子群优化算法的高阶累积量滤波器

王秀红1,2, 郭庆强1, 李歧强1   

  1. 1. 山东大学控制科学与工程学院,山东济南250061;2. 山东电子职业技术学院,山东济南250001
  • 收稿日期:2007-05-15 修回日期:1900-01-01 出版日期:2007-12-24 发布日期:2007-12-24
  • 通讯作者: 王秀红

Highorder cumulant adaptive filter based on particle swarm optimization

WANG Xiu-hong1,2,GUO Qing-qiang1,LI Qi-qiang1   

  1. 1. School of Control Science and Engineering,Shandong University,Jinan 250061,China;2. Shandong College of Electronic Technology,Jinan 250001, China
  • Received:2007-05-15 Revised:1900-01-01 Online:2007-12-24 Published:2007-12-24
  • Contact: WANG Xiu-hong

摘要: 基于高阶累积量(HOC)的自适应滤波器能够滤除高斯噪声或其它具有对称概率分布函数的噪声,其解法一般采用的是梯度搜索法,但是梯度搜索过程难以避免局部收敛而且计算复杂.粒子群优化算法(PSO)具有算法简洁,易于实现,且不需要梯度信息等优势.使用粒子群优化算法求解高阶累积量自适应滤波器系数优化问题,为滤波器参数的优化提供了一种新的思路.仿真结果表明,使用PSO优化算法求解自适应滤波器系数能获得更高的精度.同时PSO算法受系统跃变的影响较小,因此它在求解非平稳过程模型系统时具有一定的优势.

关键词: 粒子群优化算法, 高阶累计量, 自适应滤波器

Abstract: High-order cumulantbased (HOC) adaptive filter can limit Gauss noise or other noise with symmetric probability distribution function. Current HOC-based adaptive filter commonly adopt gradient search method, but gradient search process is hard to avoid local convergence and complexity. Particle swarm optimization (PSO) is simple and easy to implement, and with no gradient information and other advantages, which can be used to solve many complex problems. Using PSO algorithm to optimize the filter coefficients was proposed as a new method, considering HOC-based coefficients adjustment of adaptive filter as an optimization problem. The simulation results show that using PSO can get higher precision in HOCbased coefficients optimization of adaptive filter. In addition, PSO algorithm is relatively affected little by system jump, which has certain advantage in nonstationary process model.

Key words: PSO algorithm, high-order cumulant, adaptive filte

中图分类号: 

  • TN911.72
[1] 董红斌, 张广江, 逄锦伟, 韩启龙. 一种基于协同进化方法的聚类集成算法[J]. 山东大学学报(工学版), 2015, 45(2): 1-9.
[2] 徐龙琴1,刘双印1,2,3,4*. 基于APSO-WLSSVR的水质预测模型[J]. 山东大学学报(工学版), 2012, 42(5): 80-86.
[3] 张劲松,李歧强,王朝霞 . 基于混沌搜索的混和粒子群优化算法[J]. 山东大学学报(工学版), 2007, 37(1): 47-50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!