您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (4): 38-44.doi: 10.6040/j.issn.1672-3961.0.2021.306

• • 上一篇    

基于特征选择算法的ECG信号分类

袁高腾,周晓峰*,郭宏乐   

  1. 河海大学计算机与信息学院, 江苏 南京 211100
  • 发布日期:2022-08-24
  • 作者简介:袁高腾(1993— ),男,江苏盐城人,博士研究生,主要研究方向为图像处理与模式识别. E-mail:yuangaoteng@163.com. *通信作者简介:周晓峰(1965— ),男,江苏无锡人,教授,博士,主要研究方向为分布式计算、信息资源集成. E-mail:zhouxf@hhu.edu.cn
  • 基金资助:
    江苏省研究生科研创新计划(KYCX22_0609)

ECG signal classification based on feature selection algorithm

YUAN Gaoteng, ZHOU Xiaofeng*, GUO Hongle   

  1. College of Computer and Information, Hohai University, Nanjing 211100, Jiangsu, China
  • Published:2022-08-24

摘要: 为了提高不同类别心电图(Electrocardiogram,ECG)信号的识别精度,使用小波分析提取心电信号特征,并使用分段距离的特征筛选方法对特征进行筛选排序,去除冗余和干扰特征,挑选出关键特征。通过缩减特征数量,提高分类的精度和效率。结合机器学习分类器对特征进行分类,比较分类效果。结果显示,在MIT-BIH数据集上,本方法的分类精度比不使用特征选择分类精度高0.22%,分类精度最高达到99.67%。试验证明本研究提出的模型能够区分4种常见的ECG信号,较传统方法优势明显。

关键词: ECG信号, 小波变换, 特征选择, 机器学习

中图分类号: 

  • TP391
[1] HANNUN A Y, RAJPURKAR P, HAGHPANAHI M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network[J]. Nature Medicine, 2019, 25(1): 65-69.
[2] 潘辉, 郑威, 张莹莹. 基于改进残差网络对心电信号的识别[J]. 数据采集与处理, 2020, 4(35): 682-692. PAN Hui, ZHENG Wei, ZHANG Yingying. Recognition of ECG signal base on modified residual network[J]. Journal of Data Acquisition and Processing, 2020, 4(35): 682-692.
[3] SASHIKUMAR S P, SHAN A J, LI Q, et al. A deep learning approach to monitoring and detecting atrial fibrillation using wearable technology[C] //2017 IEEE EMBS International Conference on Biomedical & Health Informations(BHI). Orlando, America: IEEE Press,2017: 141-144.
[4] KUNG B H, HU P Y, HUANG C C, et al. An efficient ECG classification system using resource-saving architecture and random forest[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 99:1-1.
[5] 陈珂锐, 孟小峰. 机器学习的可解释性[J].计算机研究与发展, 2020, 57(9):1971-1986. CHEN Kerui, MENG Xiaofeng. Interpretation and Understanding in Machine Learning[J]. Journal of Computer Research and Development, 2020, 57(9): 1971-1986.
[6] DEO R C. Machine learning in medicine[J]. Circulation, 2015, 132(20): 1920-1921.
[7] YADAV S K, SINHA R, BORA P K. Electrocardiogram signal denoising using non-local wavelet transform domain filtering[J]. IET Signal Processing, 2015, 9(1):88-96.
[8] NARIN A, ISLER Y, OZER M, et al. Early prediction of paroxysmal atrial fibrillation based on short-term heart rate variability[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 509: 56-65.
[9] ALQUDAH A M, BADARNEH A, ABUQASMIEH I, et al. Developing of robust and high accurate ECG beat classification by combining Gaussian mixtures and wavelets features[J]. Australasian Physical & Engineering Sciences in Medicine, 2019, 41(1):149-157.
[10] HAN X, HU Y, FOSCHINI L, et al. Deep learning models for electrocardiograms are susceptible to adversarial attack[J]. Nature Medicine, 2020, 26(3):360-363.
[11] PARVANEH S, RUBIN J, RAHMAN A, et al. Analyzing singlelead short ECG recordings using dense convolutional neural networks and feature-based post-processing to detect atrial fibrillation[J]. Physiological Measurement, 2018, 39(8): 084003.
[12] FAUST O, SHENFIELD A, KAREEM M, et al. Automated detection of atrial fibrillation using long short-term memory network with RR interval signals[J]. Computers in Biology and Medicine, 2018, 102: 327-335.
[13] 杨萍, 王丹, 康子健,等. 基于模式识别和集成CNN-LSTM的阵发性房颤预测模型[J]. 浙江大学学报(工学版), 2020,361(54):202-211. YANG Ping, WANG Dan, KANG Zijian, et al. Prediction model of paroxysmal atrial fibrillation based on pattern recognition and ensemble CNN-LSTM[J]. Journal of Zhejiang University(Engineering Science), 2020, 361(54): 202-211.
[14] DIMA S M, PANAGIOTOU C, MAZOMENOS E B, et al. On the detection of myocadial scar based on ECG/VCG analysis[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(12):3399-3409.
[15] KAMALESWARAN R, MAHAJAN R, AKBILGIC O. A robust deep convolutional neural network for the classification of abnormal cardiac rhythm using varying length single lead electrocardiogram[J]. Physiological Measurement, 2018, 39(3): 035006.
[16] LI H, YUAN D, MA X, et al. Genetic algorithm for the optimization of features and neural networks in ECG signals classification[J]. Scientific Reports, 2017, 7:41011.
[17] ERDENEBAYAR U, KIM H, PARK J U, et al. Automatic prediction of atrial fibrillation based on convolutional neural network using a short-term normal electrocardiogram signal[J]. Journal of Korean Medical Science, 2019, 34(7): e64.
[18] KAMALESWARAN R, MAHAJAN R, AKBILGIC O. A robust deep convolutional neural network for the classification of deep convolutional neural network for the classification of variable length[J]. Physiological Measurement, 2018, 39(3): 035006.
[19] 方红帏, 赵涛, 佃松宜. 基于三域特征提取和GS-SVM的ECG信号智能分类技术研究[J]. 四川大学学报(自然科学版), 2020, 57(2): 297. FANG Hongwei, ZHAO Tao, DIAN Songyi. Research on intelligent classification of ECG signals based on three domain features extraction and GS-SVM[J]. Journal of Sichuan University(National Science Edition), 2020, 57(2):297.
[20] HANBAY K.Deep neural network based approach for ECG classification using hybrid differential features and active learning[J]. IET Signal Processing, 2019, 13(2):165-175.
[1] 聂秀山,马玉玲,乔慧妍,郭杰,崔超然,于志云,刘兴波,尹义龙. 任务粒度视角下的学生成绩预测研究综述[J]. 山东大学学报 (工学版), 2022, 52(2): 1-14.
[2] 孙鸿昌,周风余,单明珠,翟文文,牛兰强. 基于模式划分的空调能耗混合填补方法[J]. 山东大学学报 (工学版), 2022, 52(1): 9-18.
[3] 彭岩,冯婷婷,王洁. 基于集成学习的O3的质量浓度预测模型[J]. 山东大学学报 (工学版), 2020, 50(4): 1-7.
[4] 袁高腾,刘毅慧,黄伟,胡兵. 基于Gabor特征的乳腺肿瘤MR图像分类识别模型[J]. 山东大学学报 (工学版), 2020, 50(3): 15-23.
[5] 高铭壑,张莹,张蓉蓉,黄子豪,黄琳焱,李繁菀,张昕,王彦浩. 基于预测数据特征的空气质量预测方法[J]. 山东大学学报 (工学版), 2020, 50(2): 91-99.
[6] 张大鹏,刘雅军,张伟,沈芬,杨建盛. 基于异质集成学习的虚假评论检测[J]. 山东大学学报 (工学版), 2020, 50(2): 1-9.
[7] 刘玉田, 孙润稼, 王洪涛, 顾雪平. 人工智能在电力系统恢复中的应用综述[J]. 山东大学学报 (工学版), 2019, 49(5): 1-8.
[8] 李童,马然,郑鸿鹤,安平,胡翔宇. 基于视频统计特征的差错敏感度模型[J]. 山东大学学报 (工学版), 2019, 49(2): 116-121.
[9] 汪嘉晨,唐向红,陆见光. 轴承故障诊断中特征选取技术[J]. 山东大学学报 (工学版), 2019, 49(2): 80-87, 95.
[10] 邹启杰,李昊宇,张汝波,裴腾达,刘艳. 自主驾驶的人机交互控制[J]. 山东大学学报 (工学版), 2019, 49(2): 23-33.
[11] 李猷民,吕守国,周洋,聂雅馨,贾明亮,毕斌. 利用超定方程组的行波故障定位新方法[J]. 山东大学学报 (工学版), 2018, 48(6): 95-100.
[12] 陈红,杨小飞,万青,马盈仓. 基于相关熵和流形学习的多标签特征选择算法[J]. 山东大学学报 (工学版), 2018, 48(6): 27-36.
[13] 王飞,宋士瞻,曹永吉,谢红涛,张新华,张健,肖天,赵雅文. 基于连续小波变换的风光发电资源多尺度评估[J]. 山东大学学报 (工学版), 2018, 48(5): 124-130.
[14] 张冕,黄颖,梅海艺,郭毓. 基于Kinect的配电作业机器人智能人机交互方法[J]. 山东大学学报 (工学版), 2018, 48(5): 103-108.
[15] 牟廉明. 自适应特征选择加权k子凸包分类[J]. 山东大学学报 (工学版), 2018, 48(5): 32-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!