山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (4): 38-44.doi: 10.6040/j.issn.1672-3961.0.2021.306
• • 上一篇
袁高腾,周晓峰*,郭宏乐
YUAN Gaoteng, ZHOU Xiaofeng*, GUO Hongle
摘要: 为了提高不同类别心电图(Electrocardiogram,ECG)信号的识别精度,使用小波分析提取心电信号特征,并使用分段距离的特征筛选方法对特征进行筛选排序,去除冗余和干扰特征,挑选出关键特征。通过缩减特征数量,提高分类的精度和效率。结合机器学习分类器对特征进行分类,比较分类效果。结果显示,在MIT-BIH数据集上,本方法的分类精度比不使用特征选择分类精度高0.22%,分类精度最高达到99.67%。试验证明本研究提出的模型能够区分4种常见的ECG信号,较传统方法优势明显。
中图分类号:
[1] HANNUN A Y, RAJPURKAR P, HAGHPANAHI M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network[J]. Nature Medicine, 2019, 25(1): 65-69. [2] 潘辉, 郑威, 张莹莹. 基于改进残差网络对心电信号的识别[J]. 数据采集与处理, 2020, 4(35): 682-692. PAN Hui, ZHENG Wei, ZHANG Yingying. Recognition of ECG signal base on modified residual network[J]. Journal of Data Acquisition and Processing, 2020, 4(35): 682-692. [3] SASHIKUMAR S P, SHAN A J, LI Q, et al. A deep learning approach to monitoring and detecting atrial fibrillation using wearable technology[C] //2017 IEEE EMBS International Conference on Biomedical & Health Informations(BHI). Orlando, America: IEEE Press,2017: 141-144. [4] KUNG B H, HU P Y, HUANG C C, et al. An efficient ECG classification system using resource-saving architecture and random forest[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 99:1-1. [5] 陈珂锐, 孟小峰. 机器学习的可解释性[J].计算机研究与发展, 2020, 57(9):1971-1986. CHEN Kerui, MENG Xiaofeng. Interpretation and Understanding in Machine Learning[J]. Journal of Computer Research and Development, 2020, 57(9): 1971-1986. [6] DEO R C. Machine learning in medicine[J]. Circulation, 2015, 132(20): 1920-1921. [7] YADAV S K, SINHA R, BORA P K. Electrocardiogram signal denoising using non-local wavelet transform domain filtering[J]. IET Signal Processing, 2015, 9(1):88-96. [8] NARIN A, ISLER Y, OZER M, et al. Early prediction of paroxysmal atrial fibrillation based on short-term heart rate variability[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 509: 56-65. [9] ALQUDAH A M, BADARNEH A, ABUQASMIEH I, et al. Developing of robust and high accurate ECG beat classification by combining Gaussian mixtures and wavelets features[J]. Australasian Physical & Engineering Sciences in Medicine, 2019, 41(1):149-157. [10] HAN X, HU Y, FOSCHINI L, et al. Deep learning models for electrocardiograms are susceptible to adversarial attack[J]. Nature Medicine, 2020, 26(3):360-363. [11] PARVANEH S, RUBIN J, RAHMAN A, et al. Analyzing singlelead short ECG recordings using dense convolutional neural networks and feature-based post-processing to detect atrial fibrillation[J]. Physiological Measurement, 2018, 39(8): 084003. [12] FAUST O, SHENFIELD A, KAREEM M, et al. Automated detection of atrial fibrillation using long short-term memory network with RR interval signals[J]. Computers in Biology and Medicine, 2018, 102: 327-335. [13] 杨萍, 王丹, 康子健,等. 基于模式识别和集成CNN-LSTM的阵发性房颤预测模型[J]. 浙江大学学报(工学版), 2020,361(54):202-211. YANG Ping, WANG Dan, KANG Zijian, et al. Prediction model of paroxysmal atrial fibrillation based on pattern recognition and ensemble CNN-LSTM[J]. Journal of Zhejiang University(Engineering Science), 2020, 361(54): 202-211. [14] DIMA S M, PANAGIOTOU C, MAZOMENOS E B, et al. On the detection of myocadial scar based on ECG/VCG analysis[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(12):3399-3409. [15] KAMALESWARAN R, MAHAJAN R, AKBILGIC O. A robust deep convolutional neural network for the classification of abnormal cardiac rhythm using varying length single lead electrocardiogram[J]. Physiological Measurement, 2018, 39(3): 035006. [16] LI H, YUAN D, MA X, et al. Genetic algorithm for the optimization of features and neural networks in ECG signals classification[J]. Scientific Reports, 2017, 7:41011. [17] ERDENEBAYAR U, KIM H, PARK J U, et al. Automatic prediction of atrial fibrillation based on convolutional neural network using a short-term normal electrocardiogram signal[J]. Journal of Korean Medical Science, 2019, 34(7): e64. [18] KAMALESWARAN R, MAHAJAN R, AKBILGIC O. A robust deep convolutional neural network for the classification of deep convolutional neural network for the classification of variable length[J]. Physiological Measurement, 2018, 39(3): 035006. [19] 方红帏, 赵涛, 佃松宜. 基于三域特征提取和GS-SVM的ECG信号智能分类技术研究[J]. 四川大学学报(自然科学版), 2020, 57(2): 297. FANG Hongwei, ZHAO Tao, DIAN Songyi. Research on intelligent classification of ECG signals based on three domain features extraction and GS-SVM[J]. Journal of Sichuan University(National Science Edition), 2020, 57(2):297. [20] HANBAY K.Deep neural network based approach for ECG classification using hybrid differential features and active learning[J]. IET Signal Processing, 2019, 13(2):165-175. |
[1] | 聂秀山,马玉玲,乔慧妍,郭杰,崔超然,于志云,刘兴波,尹义龙. 任务粒度视角下的学生成绩预测研究综述[J]. 山东大学学报 (工学版), 2022, 52(2): 1-14. |
[2] | 孙鸿昌,周风余,单明珠,翟文文,牛兰强. 基于模式划分的空调能耗混合填补方法[J]. 山东大学学报 (工学版), 2022, 52(1): 9-18. |
[3] | 彭岩,冯婷婷,王洁. 基于集成学习的O3的质量浓度预测模型[J]. 山东大学学报 (工学版), 2020, 50(4): 1-7. |
[4] | 袁高腾,刘毅慧,黄伟,胡兵. 基于Gabor特征的乳腺肿瘤MR图像分类识别模型[J]. 山东大学学报 (工学版), 2020, 50(3): 15-23. |
[5] | 高铭壑,张莹,张蓉蓉,黄子豪,黄琳焱,李繁菀,张昕,王彦浩. 基于预测数据特征的空气质量预测方法[J]. 山东大学学报 (工学版), 2020, 50(2): 91-99. |
[6] | 张大鹏,刘雅军,张伟,沈芬,杨建盛. 基于异质集成学习的虚假评论检测[J]. 山东大学学报 (工学版), 2020, 50(2): 1-9. |
[7] | 刘玉田, 孙润稼, 王洪涛, 顾雪平. 人工智能在电力系统恢复中的应用综述[J]. 山东大学学报 (工学版), 2019, 49(5): 1-8. |
[8] | 李童,马然,郑鸿鹤,安平,胡翔宇. 基于视频统计特征的差错敏感度模型[J]. 山东大学学报 (工学版), 2019, 49(2): 116-121. |
[9] | 汪嘉晨,唐向红,陆见光. 轴承故障诊断中特征选取技术[J]. 山东大学学报 (工学版), 2019, 49(2): 80-87, 95. |
[10] | 邹启杰,李昊宇,张汝波,裴腾达,刘艳. 自主驾驶的人机交互控制[J]. 山东大学学报 (工学版), 2019, 49(2): 23-33. |
[11] | 李猷民,吕守国,周洋,聂雅馨,贾明亮,毕斌. 利用超定方程组的行波故障定位新方法[J]. 山东大学学报 (工学版), 2018, 48(6): 95-100. |
[12] | 陈红,杨小飞,万青,马盈仓. 基于相关熵和流形学习的多标签特征选择算法[J]. 山东大学学报 (工学版), 2018, 48(6): 27-36. |
[13] | 王飞,宋士瞻,曹永吉,谢红涛,张新华,张健,肖天,赵雅文. 基于连续小波变换的风光发电资源多尺度评估[J]. 山东大学学报 (工学版), 2018, 48(5): 124-130. |
[14] | 张冕,黄颖,梅海艺,郭毓. 基于Kinect的配电作业机器人智能人机交互方法[J]. 山东大学学报 (工学版), 2018, 48(5): 103-108. |
[15] | 牟廉明. 自适应特征选择加权k子凸包分类[J]. 山东大学学报 (工学版), 2018, 48(5): 32-37. |
|