山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (2): 1-14.doi: 10.6040/j.issn.1672-3961.0.2021.489
• 机器学习与数据挖掘 • 下一篇
聂秀山1(),马玉玲1,*(),乔慧妍1,郭杰1,崔超然2,于志云,刘兴波1,尹义龙3
Xiushan NIE1(),Yuling MA1,*(),Huiyan QIAO1,Jie GUO1,Chaoran CUI2,Zhiyun YU,Xingbo LIU1,Yilong YIN3
摘要:
学生成绩预测作为教育数据挖掘领域重要的研究分支之一, 学者们已开展了大批卓有成效的研究工作, 但对现有文献进行调查、梳理的综述性研究仍相对缺乏。立足于不同的应用场景, 以学生成绩预测研究的任务粒度为视角, 从答题表现预测、课程成绩预测、综合学习表现预测等3个方面, 详细介绍学生成绩预测研究所采用的技术和方法, 并介绍目前学生成绩预测研究在真实教学场景中的应用情况, 从而为科研和教育管理工作者提供更有针对性的参考信息。
中图分类号:
1 | 张燕南. 大数据的教育领域应用之研究[D]. 上海: 华东师范大学, 2016. |
ZHANG Yannan. A study of big data applications in the field of education[D]. Shanghai: East China Normal University, 2016. | |
2 |
张甜, 尹长川, 潘林. 基于改进的聚类和关联规则挖掘的学生成绩分析[J]. 北京邮电大学学报(社会科学版), 2018, 20 (2): 91- 96.
doi: 10.3969/j.issn.1008-7729.2018.02.012 |
ZHANG Tian , YIN Changchuan , PAN Lin . Score analysis of undergraduate students based on improved clustering and association rules mining[J]. Journal of Beijing University of Posts and Telecommunications (Social Sciences Edition), 2018, 20 (2): 91- 96.
doi: 10.3969/j.issn.1008-7729.2018.02.012 |
|
3 | ROMERO C , VENTURA S . Educational data mining: a review of the state of the art[J]. IEEE Transactions on Systems Man & Cybernetics Part C, 2010, 40 (6): 601- 618. |
4 | 周庆, 牟超, 杨丹. 教育数据挖掘研究进展综述[J]. 软件学报, 2015, 26 (11): 282- 298. |
ZHOU Qing , MU Chao , YANG Dan . Research progress on educational data mining: a survey[J]. Journal of Software, 2015, 26 (11): 282- 298. | |
5 | SMITH M , TRIMBLE H M . The prediction of the future performance of students from their past records[J]. Journal of Chemical Education, 1928, 6 (1): 93. |
6 | 刘孝贤, 王其超. 考试成绩的灰色预测模型[J]. 山东师范大学学报(自然科学版), 1987, (4): 102- 110. |
LIU Xiaoxian , WANG Qichao . Grey prediction model for examination marks[J]. Journal of Shandong Normal University (Natural Science), 1987, (4): 102- 110. | |
7 | BADGLEY R F , HETHERINGTON W , MACLEOD J W . Social characteristics and prediction of academic performance of saskatchewan medical students[J]. Canadian Medical Association Journal, 1962, 86 (14): 624- 629. |
8 | 马玉玲. 基于机器学习的高校学生成绩预测方法研究[D]. 济南: 山东大学, 2020. |
MA Yuling. Study of college student performance pred-iction based on machine learning[D]. Jinan: Shandong University, 2020. | |
9 | MA Y M, LIU B, WONG C, et al. Targeting the right students using data mining[C]//Processdings of KDD-00. Boston, USA: AAAI Press, 2000: 457-464. |
10 |
SHAHIRI A M , HUSAIN W R , ABDUL N . A review on predicting student's performance using data mining techniques[J]. Procedia Computer Science, 2015, 72, 414- 422.
doi: 10.1016/j.procs.2015.12.157 |
11 | XENOS M , PIERRAKEAS C , PINTELAS P . A survey on student dropout rates and dropout causes concerning the students in the course of informatics of the hellenic open university[J]. Computers & Education, 2002, 39, 361- 377. |
12 | KUMAR A D , RADHIKA D V . A survey on predicting student performance[J]. International Journal of Computer Science and Information Technologies, 2014, 5 (5): 6147- 6149. |
13 | 周玉龙, 焦广民. 社会环境对中学生影响的调查与分析[C]//全国教育科研"十五"成果论文集: 第一卷. 北京: 新华出版社, 2005: 139-141. |
ZHOU Yulong, JIAO Guangmin. Investigation and analysis of the impact of social environment on middle school students[C]//The Proceedings of Achievements of the Tenth Five Year Plan on National Education and Scientific Research: Volume I. Beijing: Xinhua Press, 2005: 139-141. | |
14 | 吴增强. 不同学习等第学生家庭环境变量比较研究[J]. 上海教育科研, 1992, (4): 6- 10. |
WU Zengqiang . A comparative study on family environment variables of students with different learning grades[J]. Shanghai Research on Education, 1992, (4): 6- 10. | |
15 | 张翔, 陈言贵, 赵必华. 家庭环境对学业成绩的影响研究[J]. 宁波大学学报(教育科学版), 2012, 34 (4): 5. |
ZHANG Xiang , CHEN Yangui , ZHAO Bihua . A study of the relationship between family's environment and educational achievement[J]. Journal of Ningbo University (Educational Science Edition), 2012, 34 (4): 5. | |
16 | 李华, 程晋宽. 校长领导力是如何影响学生成绩的?[J]. 外国教育研究, 2020, 47 (4): 71- 85. |
LI Hua , CHENG Jinkuan . How does principal leadership influence student achievement?[J]. Studies in Foreign Education, 2020, 47 (4): 71- 85. | |
17 | ADEDEJI T . The impact of motivation on student's academic achievement and learning outcomes in mathematics among secondary school students in nigeria[J]. Eurasia Journal of Mathematics, Science & Technology Education, 2007, 3 (2): 149- 156. |
18 |
KAUFMAN J C , AGARS M D , LOPEZ-WAGNER M C . The role of personality and motivation in predicting early college academic success in non-traditional students at a hispanic-serving institution[J]. Learning and Individual Differences, 2008, 18 (4): 492- 496.
doi: 10.1016/j.lindif.2007.11.004 |
19 |
高秀梅. 当代大学生学习动机的特征及其对学业成绩的影响[J]. 高教探索, 2020, (1): 5.
doi: 10.3969/j.issn.1673-9760.2020.01.002 |
GAO Xiumei . Characteristics of contemporary college students' learning motivation and its influence on acad-emic performance[J]. Higher Education Exploration, 2020, (1): 5.
doi: 10.3969/j.issn.1673-9760.2020.01.002 |
|
20 |
POROPAT A E . A meta-analysis of the five-factor model of personality and academic performance[J]. Psychological Bulletin, 2009, 135 (2): 322.
doi: 10.1037/a0014996 |
21 | FU J H, CHANG J H, HUANG Y M, et al. A support vector regression-based prediction of students' school performance[C]//Proceedings of IS3C-12. Taiwan, China: IEEE Press, 2012: 84-87. |
22 | 李艳. 专业兴趣吻合度大五人格对大学生学习成绩的影响[J]. 校园心理, 2018, 16 (2): 117- 120. |
LI Yan . Consistency of professional interest: the influence of five personality on college students' academic performance[J]. Journal of Campus Life & Mental Health, 2018, 16 (2): 117- 120. | |
23 | 赵文学, 王艳芝. 大五人格特质维度与大学生英语学习成绩关系研究[J]. 昌吉学院学报, 2006, (3): 3. |
ZHAO Wenxue , WANG Yanzhi . Study on the relationship between the big five personality traits and college students' English learning performance[J]. Journal of Changji College, 2006, (3): 3. | |
24 | O'CONNOR M C , PAUNONEN S V . Big five personality predictors of postsecondary academic performance[J]. Personality & Individual Differences, 2007, 43 (5): 971- 990. |
25 |
PRITCHARD M E , WILSON G S . Using emotional and social factors to predict student success[J]. Journal of College Student Development, 2003, 44 (1): 18- 28.
doi: 10.1353/csd.2003.0008 |
26 |
ROBBINS S B , IN-SUE O , HUY L , et al. Intervention effects on college performance and retention as mediated by motivational, emotional, and social control factors: integrated meta-analytic path analyses[J]. Journal of Applied Psychology, 2009, 94 (5): 1163.
doi: 10.1037/a0015738 |
27 |
NGUYEN K T , DUONG T M , TRAN N Y , et al. The impact of emotional intelligence on performance: a closer look at individual and environmental factors[J]. The Journal of Asian Finance, Economics and Business, 2020, 7 (1): 183- 193.
doi: 10.13106/jafeb.2020.vol7.no1.183 |
28 | YANG T C , CHEN M C , CHEN S Y . The influences of self-regulated learning support and prior knowledge on improving learning performance[J]. Computers & Education, 2018, 126, 37- 52. |
29 |
MITCHELL T J F , CHEN S Y , MACREDIE R D . Hypermedia learning and prior knowledge: domain expertise vs. system expertise[J]. Journal of Computer Assisted Learning, 2005, 21 (1): 53- 64.
doi: 10.1111/j.1365-2729.2005.00113.x |
30 |
MOOS D C , AZEVEDO R . Self-regulated learning with hypermedia: the role of prior domain knowledge[J]. Contemporary Educational Psychology, 2008, 33 (2): 270- 298.
doi: 10.1016/j.cedpsych.2007.03.001 |
31 |
孙睿君, 沈若萌, 管浏斯. 大学生学习成效的影响因素研究[J]. 国家教育行政学院学报, 2012, (9): 65- 71.
doi: 10.3969/j.issn.1672-4038.2012.09.014 |
SUN Ruijun , SHEN Ruomeng , GUAN Liusi . Study on the influencing factors of college students' learning effectiveness[J]. Journal of National Academy of Education Administration, 2012, (9): 65- 71.
doi: 10.3969/j.issn.1672-4038.2012.09.014 |
|
32 | FARSHID M , HEIDI A , DIEFES D , et al. Models for early prediction of at-risk students in a course using standards-based grading[J]. Computers & Education, 2016, 103, 1- 15. |
33 |
MAUREEN A C . Aptitude is not enough: how personality and behavior predict academic performance[J]. Journal of Research in Personality, 2006, 40 (3): 339- 346.
doi: 10.1016/j.jrp.2004.10.003 |
34 | BONNARDEL R . Modes of behavior and academic-success at the student level[J]. Travel Humain, 1964, 27 (3/4): 349- 355. |
35 |
CAO Y , GAO J , LIAN D , et al. Orderliness predicts academic performance: behavioral analysis on campus lifestyle[J]. Journal of The Royal Society Interface, 2018, 15 (146): 20180210.
doi: 10.1098/rsif.2018.0210 |
36 |
WHEATON A G , CHAPMAN D P , CROFT J B . School start times, sleep, behavioral, health, and academic outcomes: a review of the literature[J]. Journal of School Health, 2016, 86 (5): 363- 381.
doi: 10.1111/josh.12388 |
37 |
XU X , WANG J Z , PENG H , et al. Prediction of academic performance associated with internet usage behaviors using machine learning algorithms[J]. Computers in Human Behavior, 2019, 98, 166- 173.
doi: 10.1016/j.chb.2019.04.015 |
38 |
SINGLETON R A , WOLFSON A R . Alcohol consumption, sleep, and academic performance among college students[J]. Journal of Studies on Alcohol and Drugs, 2009, 70 (3): 355- 363.
doi: 10.15288/jsad.2009.70.355 |
39 |
GILLILAND K , ANDRESS D . Ad lib caffeine consumption, symptoms of caffeinism, and academic performance[J]. The American Journal of Psychiatry, 1981, 138 (4): 512- 515.
doi: 10.1176/ajp.138.4.512 |
40 | LIU Q , WU R Z , CHEN E H , et al. Fuzzy cognitive diagnosis for modelling examinee performance[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2018, 9 (4): 1- 26. |
41 | AYERS E , JUNKER B . Irt modeling of tutor performance to predict end-of-year exam scores[J]. Educational & Psychological Measurement, 2007, 68 (6): 972- 987. |
42 | PARDOS Z A, HEFFERNAN N T. Using hmms and bagged decision trees to leverage rich features of user and skill from an intelligent tutoring system dataset[C]//Processdings of KDD-01. San Francisco, USA: AAAI Press, 2001: 1-16. |
43 | WU R Z, LIU Q, LIU Y P, et al. Cognitive modelling for predicting examinee performance[C]//Proceedings of IJCAI-15. Buenos Aires, Argentina: Morgan Kaufmann, 2015: 1017-1024. |
44 | CORBETT A T , ANDERSON J R . K nowledge tracing: modeling the acquisition of procedural knowledge[J]. User Modeling and User-adapted Interaction, 1994, 4, 253- 278. |
45 | BAKER R S, CORBETT A T, ALEVEN V. More accurate student modeling through contextual estimation of slip and guess probabilities in bayesian knowledge tracing[C]//Proceedings of ITS-08. Montreal, Canada: Springer, 2008: 406-415. |
46 | PARDOS Z A, HEFFERNAN N T. Modeling individualization in a bayesian networks implementation of knowledge tracing[C]//Proceedings of UMAP-10. Big Island, USA: IEEE Press, 2010: 255-266. |
47 | YUDELSON M, KOEDINGER R, GORDON J. Individualized bayesian knowledge tracing models[C]//Proceedings of ICAIE-13. Memphis, USA: Springer, 2013: 171-180. |
48 |
CORBETT A , MCLAUGHLIN M , SCARPINATO K C . Modeling student knowledge: Cognitive tutors in high school and college[J]. User Modeling and User-adapted Interaction, 2000, 10, 81- 108.
doi: 10.1023/A:1026505626690 |
49 | PARDOS Z A, HEFFERNAN N T. KT-IDEM: Introducing item difficulty to the knowledge tracing model[C]//Proceedings of UMAP-11. Girona, Spain: ACM Press, 2011: 243-254. |
50 | NEDUNGADI P, REMYA M. Incorporating forgetting in the personalized, clustered, bayesian knowledge tracing model[C]//Proceedings of ICCSIP-15. Hong Kong, China: IEEE Press, 2015: 1-5. |
51 | CEN H, KOEDINGER K, JUNKER B. Learning factors analysis-a general method for cognitive model evaluation and improvement[C]//Proceedings of ITS-06. Berlin, Germany: Springer, 2006: 164-175. |
52 | PAVLIK P I, CEN H, KOEDINGER K R. Performance factors analysis: a new alternative to knowledge tracing[C]//Proceedings of AIED-09. Brighton, UK: Springer, 2009: 531-538. |
53 | GONG Y , BECK J E , HEFFERNAN N T . How to construct more accurate student models: comparing and optimizing knowledge tracing and performance factor analysis[J]. International Journal of Artificial Intelligence in Education, 2011, 21 (1/2): 27- 46. |
54 | MANDALAPU V, GONG J, CHEN L. Do we need to go deep? knowledge tracing with big data[J]. arXiv Preprint arXiv: 2101.08349, 2021. https://arxiv.org/ftp/arxiv/papers/2101/2101.08349.pdf. |
55 | THAI-NGHE N, HORVÁTH T, SCHMIDTTHIEME L. Factorization models for forecasting student performance[C]//Proceedings of ICEDM-10. Pittsburgh, PA, USA: Springer, 2010: 11-20. |
56 | VIE J J, KASHIMA H. Knowledge tracing machines: factorization machines for knowledge tracing[C]//Proceedings of AAAI-19. Hawaii, USA: AAAI Press, 2019: 750-757. |
57 | GAN W, SUN Y, YE S, et al. Field-aware knowledge tracing machine by modelling students' dynamic learning procedure and item difficulty[C]//Proceedings of ICDM-19. Beijing, China: IEEE Press, 2019: 1045-1046. |
58 | CHEN Y Y, LIU Q, HUANG Z Y, et al. Tracking knowledge proficiency of students with educational priors[C]//Proceedings of CIKM-17. Singapore: ACM Press, 2017: 989-998. |
59 | LIU Q , HUANG Z , YIN Y , et al. EKT: exercise-aware knowledge tracing for student performance prediction[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 33 (1): 100- 115. |
60 |
BENGIO Y , COURVILLE A , VINCENT P . Representation learning: a review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 (8): 1798- 1828.
doi: 10.1109/TPAMI.2013.50 |
61 | PIECH C, SPENCER J, HUANG J, et al. Deep knowledge tracing[C]// Proceedings of NeurIPS-15. Montreal, Canada: NIPS Press, 2015: 505-513. |
62 | ZHANG J, SHI X, KING I, et al. Dynamic key-value memory networks for knowledge tracing[C]//Proce-edings of WWW-17. Perth, Australia: ACM Press, 2017: 765-77. |
63 | PANDEY S, KARYPIS G. A self attentive model for knowledge tracing[C]//Proceedings of ICEDM-19. Montreal, Canada: Springer, 2019: 384-389. |
64 | SHEN S H, LIU Q, CHEN E H, et al. Convolutional knowledge tracing: modeling individualization in student learning process[C]//Proceedings of SIGIR-20. Xi'an, China. ACM Press, 2020: 1857-1860. |
65 | YANG Y, SHEN J, QU Y R, et al. GIKT: a graph-based interaction model for knowledge tracing[J]. arXiv Preprint arXiv: 2009, 05991, 2020. https://arxiv.org/pdf/2009.05991.pdf. |
66 | YEUNG C K. Deep-IRT: make deep learning based knowledge tracing explainable using item response theory[J]. arXiv Preprint arXiv: 1904. 11738, 2019. https://arxiv.org/pdf/1904.11738.pdf. |
67 |
ANAL A , DEVADATTA S . Early prediction of students performance using machine learning techniques[J]. International Journal of Computer Applications, 2014, 107 (1): 37- 43.
doi: 10.5120/18717-9939 |
68 | MARBOUTI F , DIEFES-DUX H A , MADHAVAN K . Models for early prediction of at-risk students in a course using standards-based grading[J]. Computers & Education, 2016, 103, 1- 15. |
69 | ELBADRAWY A, STUDHAM R S, KARYPIS G. Collaborative multi-regression models for predicting students' performance in course activities[C]//Proceedings of LAK-15. New York, USA: ACM Press, 2015: 103-107. |
70 | SWEENEY M, LESTER J, RANGWALA H. Next-term student grade prediction[C]//Proceedings of IEEE BigData-15. Santa Clara, CA: IEEE Press, 2015: 970-975. |
71 |
WANG A Y , NEWLIN M H , TUCKER T L . A discourse analysis of online classroom chats: Predictors of cyber-student performance[J]. Teaching of Psychology, 2001, 28 (3): 222- 226.
doi: 10.1207/S15328023TOP2803_09 |
72 |
FORTIER M S , VALLERAND R J , FR'ED'ERIC G . Academic motivation and school performance: Toward a structural model[J]. Contemporary Educational Psychology, 1995, 20 (3): 257- 274.
doi: 10.1006/ceps.1995.1017 |
73 | 黄建明. 贝叶斯网络在学生成绩预测中的应用[J]. 计算机科学, 2012, 39 (增刊3): 280- 282. |
HUANG Jianming . Application of Bayesian network to predicting students' achievement[J]. Computer Science, 2012, 39 (Suppl.3): 280- 282. | |
74 |
XING W L , GUO R , EVA P , et al. Participation-based student final performance prediction model through interpretable genetic programming[J]. Computers in Human Behavior, 2015, 47, 168- 181.
doi: 10.1016/j.chb.2014.09.034 |
75 | MA Y M, LIU B, WONG C K, et al. Targeting the right students using data mining[C]//Proceedings of SIGKDD-00. Boston, USA: ACM Press, 2000: 457-464. |
76 | FANG N, HUANG S B. Work in progress: early prediction of students' academic performance in an introductory engineering course through different mathematical modeling techniques[C]//Proceedings of FIE-12. Seattle, USA: IEEE Press, 2012: 1-2. |
77 |
PANDEY M , SHARMA V K . A decision tree algorithm pertaining to the student performance analysis and prediction[J]. International Journal of Computer Applications, 2013, 61 (13): 1- 5.
doi: 10.5120/9985-4822 |
78 | GEDEON T D, TURNER S. Explaining student grades predicted by a neural network[C]//Proceedings of IJCNN-93. Nagoya, Japan: IEEE Press, 1993: 609-612. |
79 | LYKOURENTZOU I , GIANNOUKOS I , MPARDIS G , et al. Early and dynamic student achievement prediction in e-learning courses using neural networks[J]. Journal of the American Society for Information Science & Technology, 2014, 60 (2): 372- 380. |
80 | TAYLAN O , KARAGÖZOĞLU B . An adaptive neuro-fuzzy model for prediction of student's academic performance[J]. Computers & Industrial Engineering, 2009, 57 (3): 732- 741. |
81 | KIM B H, VIZITEI E, GANAPATHI V. Gritnet: student performance prediction with deep learning[J]. arXiv Preprint arXiv: 1804.07405, 2018. https://arxiv.org/pdf/1804.07405.pdf. |
82 | 罗达雄, 叶俊民, 郭霄宇, 等. Arpdf: 基于对话流的学习者成绩等级预测算法[J]. 小型微型计算机系统, 2019, (2): 6. |
LUO Daxiong , YE Junmin , GUO Xiaoyu , et al. Arpdf: achievement rank prediction of learner based on dialogue flow[J]. Journal of Chinese Computer Systems, 2019, (2): 6. | |
83 | AMRA I A, MAGHARI A Y. Students performance prediction using knn and naïve bayesian[C]//Proceedings of ICIT-17. Amman, Jordan: IEEE Press, 2017: 909-913. |
84 | LOPEZ M I, LUNA J M, ROMERO C, et al. Classification via clustering for predicting final marks based on student participation in forums[C]//Proceedings of ICEDM-12. Chania, Greece: Springer, 2012: 148-151. |
85 | MINAEI-BIDGOLI B, KASHY D A, KORTMEYER G, et al. Predicting student performance: an application of data mining methods with an educational web-based system[C]//Proceedings of FIE-03. Denver, USA: IEEE Press, 2003: 13-18. |
86 | ZAFRA A, VENTURA S. Predicting student grades in learning management systems with multiple instance genetic programming[C]//Proceedings of EDM-09. Cordoba, Spain: Springer, 2009: 307-314. |
87 |
MA Y L , CUI C R , NIE X S , et al. Pre-course student performance prediction with multi-instance multi-label learning[J]. Science China Information Sciences, 2019, 62 (2): 29101.
doi: 10.1007/s11432-017-9371-y |
88 |
MOSELEY L G , MEAD D M . Predicting who will drop out of nursing courses: a machine learning exercise[J]. Nurse Education Today, 2008, 28 (4): 469- 475.
doi: 10.1016/j.nedt.2007.07.012 |
89 | MASSA S, PULIAFITO P P. An application of data mining to the problem of the university students' dropout using markov chains[C]//Proceedings of PKDD-99. Prague, Czech Republic: Springer, 1999: 51-60. |
90 | SANJEEV A P, ZYTKOW J M. Discovering enrollment knowledge in university databases[C]//Proceedings of SIGKDD-95. Montreal, CA: ACM Press, 1995: 246-251. |
91 |
周庆, 尹春梅, 全文君, 等. 基于校园卡消费预测学生挂科情况[J]. 中国教育技术装备, 2017, (24): 51- 54.
doi: 10.3969/j.issn.1671-489X.2017.24.051 |
ZHOU Qing , YIN Chunmei , QUAN Wenjun , et al. Using consumption of campus card to predict students fail[J]. Educational Equipment in China, 2017, (24): 51- 54.
doi: 10.3969/j.issn.1671-489X.2017.24.051 |
|
92 | 谢娟英, 张宜, 陈恩红. 学生成绩关键因素挖掘与成绩预测[J]. 南京信息工程大学学报(自然科学版), 2019, 11 (3): 316- 325. |
XIE Juanying , ZHANG Yi , CHEN Enhong . Key factors mining and prediction of students' performance[J]. Journal of Nanjing University of Information Science and Technology (Natural Science Edition), 2019, 11 (3): 316- 325. | |
93 | LIAN D F , LIU Q . Jointly recommending library books and predicting academic performance: a mutual reinforcement perspective[J]. Journal of Computer Science & Technology, 2018, 33 (4): 654- 667. |
94 | WANG R, HARARI G M, HAO P L, et al. Smartgpa: how smartphones can assess and predict academic performance of college students[C]// Proceedings of UbiComp-15. Osaka, Japan: ACM Press, 2015: 295-306. |
95 | YAO H X , LIAN D F , CAO Y , et al. Predicting academic performance for college students: A campus behavior perspective[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10, 1- 21. |
96 | MA Y L, ZONG J, CUI C R, et al. Dual path convolutional neural network for student performance prediction[C]//Proceedings of WISE-19. Macau, China: Spr-inger, 2019: 133-146. |
97 | KONGSAKUN K , FUNG C C . Neural network modeling for an intelligent recommendation system supporting SRM for universities in Thailand[J]. WSEAS Transactions on Computers, 2012, 11 (2): 34- 44. |
98 |
姜强, 赵蔚, 杜欣, 等. 基于用户模型的个性化本体学习资源推荐研究[J]. 中国电化教育, 2010, (5): 106- 111.
doi: 10.3969/j.issn.1006-9860.2010.05.023 |
JIANG Qiang , ZHAO Wei , DU Xin , et al. Research on personalized ontology learning resource recommendation based on user model[J]. Chinese Audio-visual Education, 2010, (5): 106- 111.
doi: 10.3969/j.issn.1006-9860.2010.05.023 |
|
99 | YE H J, ZHAN D C, LI X L, et al. College student scholarships and subsidies granting: a multi-modal multi-label approach[C]// Proceedings of ICDM-16. Barce-lona, Spain: IEEE Press, 2016: 559-568. |
[1] | 孙鸿昌,周风余,单明珠,翟文文,牛兰强. 基于模式划分的空调能耗混合填补方法[J]. 山东大学学报 (工学版), 2022, 52(1): 9-18. |
[2] | 袁高腾,刘毅慧,黄伟,胡兵. 基于Gabor特征的乳腺肿瘤MR图像分类识别模型[J]. 山东大学学报 (工学版), 2020, 50(3): 15-23. |
[3] | 高铭壑,张莹,张蓉蓉,黄子豪,黄琳焱,李繁菀,张昕,王彦浩. 基于预测数据特征的空气质量预测方法[J]. 山东大学学报 (工学版), 2020, 50(2): 91-99. |
[4] | 张大鹏,刘雅军,张伟,沈芬,杨建盛. 基于异质集成学习的虚假评论检测[J]. 山东大学学报 (工学版), 2020, 50(2): 1-9. |
[5] | 刘玉田, 孙润稼, 王洪涛, 顾雪平. 人工智能在电力系统恢复中的应用综述[J]. 山东大学学报 (工学版), 2019, 49(5): 1-8. |
[6] | 李童,马然,郑鸿鹤,安平,胡翔宇. 基于视频统计特征的差错敏感度模型[J]. 山东大学学报 (工学版), 2019, 49(2): 116-121. |
[7] | 邹启杰,李昊宇,张汝波,裴腾达,刘艳. 自主驾驶的人机交互控制[J]. 山东大学学报 (工学版), 2019, 49(2): 23-33. |
[8] | 张冕,黄颖,梅海艺,郭毓. 基于Kinect的配电作业机器人智能人机交互方法[J]. 山东大学学报 (工学版), 2018, 48(5): 103-108. |
[9] | 刘洋,刘博,王峰. 基于Parameter Server框架的大数据挖掘优化算法[J]. 山东大学学报(工学版), 2017, 47(4): 1-6. |
[10] | 魏波,张文生,李元香,夏学文,吕敬钦. 一种选择特征的稀疏在线学习算法[J]. 山东大学学报(工学版), 2017, 47(1): 22-27. |
[11] | 周旺,张晨麟,吴建鑫. 一种基于Hartigan-Wong和Lloyd的定性平衡聚类算法[J]. 山东大学学报(工学版), 2016, 46(5): 37-44. |
[12] | 孟令恒,丁世飞. 基于单静态图像的深度感知模型[J]. 山东大学学报(工学版), 2016, 46(3): 37-43. |
[13] | 刘杰, 杨鹏, 吕文生, 刘阿古达木, 刘俊秀. 基于气象因素的PM2.5质量浓度预测模型[J]. 山东大学学报(工学版), 2015, 45(6): 76-83. |
[14] | 郑毅, 朱成璋. 基于深度信念网络的PM2.5预测[J]. 山东大学学报(工学版), 2014, 44(6): 19-25. |
[15] | 谢琳1,殷熙尧2,李凡长3,吴佳3. 一种逆归结学习表示[J]. 山东大学学报(工学版), 2013, 43(4): 46-50. |
|