山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (5): 76-83.doi: 10.6040/j.issn.1672-3961.0.2020.423
Wenjing DU1(),Junzhe ZHAO1,Lixin ZHANG2,Zhan WANG1,Wanxiang JI3,*()
摘要:
主要介绍换热器200余年的发展历程,对不同结构换热器的产生及典型应用进行综述。重点阐述管壳式换热器、板式换热器、微结构换热器和印刷电路板换热器四种不同结构的换热器,及其为了实现强化传热所开展的相关几何参数优化和结构改进的发展工作。分析现有换热器结构设计中存在的问题与限制,总结换热器结构更新的具体建议和发展趋势。
中图分类号:
1 | 阎皓峰, 甘永平. 新型换热器与传热强化[M]. 北京: 宇航出版社, 1991: 11- 15. |
2 |
SHEIKHOLESLAMI M , GORJI-BANDPY M , GANJI D D . Review of heat transfer enhancement methods: focus on passive methods using swirl flow devices[J]. Renewable and Sustainable Energy Reviews, 2015, 49, 444- 469.
doi: 10.1016/j.rser.2015.04.113 |
3 |
LIU S , SAKR M . A comprehensive review on passive heat transfer enhancements in pipe exchangers[J]. Renewable and Sustainable Energy Reviews, 2013, 19, 64- 81.
doi: 10.1016/j.rser.2012.11.021 |
4 | 熊志立, 任书恒. 管壳式换热器TEMA标准的最新修订情况[J]. 化工炼油机械通讯, 1980, (2): 55- 61. |
XIONG Zhili , REN Shuheng . The latest revision of TEMA standard for shell and tube heat exchangers[J]. Petro-Chemical Equipment, 1980, (2): 55- 61. | |
5 | 冯志良, 常春梅. 当代国外板式换热器摘萃[J]. 石油化工设备, 1999, (2): 3- 5. |
FENG Zhiliang , CHANG Chunmei . Essence of overseas plate heat exchangers in today[J]. Petro-Chemical Equipment, 1999, (2): 3- 5. | |
6 | 嵇训达. 国外板翅式换热器的技术与应用[J]. 流体工程, 1986, (4): 38- 43. |
JI Xunda . Technology and application of plate-fin heat exchanger abroad[J]. Fluid Machinery, 1986, (4): 38- 43. | |
7 | 薛焘, 佘志鸿, 陈诚, 等. 板翅式换热器技术的发展与应用[J]. 化工装备技术, 2016, 37 (4): 22- 25. |
XUE Tao , SHE Zhihong , CHEN Cheng , et al. Technological development and application of plate-fin heat exchanger[J]. Chemical Equipment Technology, 2016, 37 (4): 22- 25. | |
8 | 嵇训达. 我国板翅式换热器技术进展[J]. 低温与特气, 1998, (1): 22- 27. |
JI Xunda . Technical progress of plate-fin heat exchanger in China[J]. Low Temperature and Specialty Gases, 1998, (1): 22- 27. | |
9 | 黄鸿鼎. 美国传热研究公司的科研动态[J]. 石油化工设备, 1985, (3): 52- 56. |
HUANG Hongding . Research trends of American heat transfer research company[J]. Petro-Chemical Equi-pment, 1985, (3): 52- 56. | |
10 | 陈绍元. 英国传热流体学会及其软件简介[J]. 石化技术与应用, 1990, (1): 11- 13. |
CHEN Shaoyuan . Introduction to british heat transfer fluid society and its software[J]. Petrochemical Technology & Application, 1990, (1): 11- 13. | |
11 | CHI S W . Heat pipe theory and practice: a source book[M]. Washington, USA: Hemisphere Pub, 1976: 1- 15. |
12 |
TUCKERMAN D B , PEASE R F W . High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2 (5): 126- 129.
doi: 10.1109/EDL.1981.25367 |
13 |
于改革, 陈永东, 李雪, 等. 印刷电路板式换热器传热与流动研究进展[J]. 流体机械, 2017, 45 (12): 73- 79.
doi: 10.3969/j.issn.1005-0329.2017.12.015 |
YU Gaige , CHEN Yongdong , LI Xue , et al. Research progress in heat transfer and fluid flow of printed circuit heat exchanger[J]. Fluid Machinery, 2017, 45 (12): 73- 79.
doi: 10.3969/j.issn.1005-0329.2017.12.015 |
|
14 | SOUTHALL D, DEWSON S J. Innovative compact heat exchangers[C]// Proceedings of ICAPP 10. SanDiego, USA: Curran Associates Inc, 2010. |
15 |
陈永东, 于改革, 吴晓红. 新型扩散焊紧凑式换热器[J]. 压力容器, 2016, 33 (5): 46- 55.
doi: 10.3969/j.issn.1001-4837.2016.05.008 |
CHEN Yongdong , YU Gaige , WU Xiaohong . New type of diffusion bonding compact heat exchangers[J]. Pressure Vessel Technology, 2016, 33 (5): 46- 55.
doi: 10.3969/j.issn.1001-4837.2016.05.008 |
|
16 | MUKHERJEE R . Effectively design shell-and-tube heat exchangers[J]. Chemical Engineering Progress, 1998, 94 (2): 21- 37. |
17 |
邓斌, 王凯, 陶文铨. 新齿型内螺纹传热管蒸发性能研究[J]. 制冷学报, 2007, (4): 54- 58.
doi: 10.3969/j.issn.0253-4339.2007.04.010 |
DENG Bin , WANG Kai , TAO Wenquan . Evaporation performance research of new micro-fin copper tube[J]. Journal of Refrigeration, 2007, (4): 54- 58.
doi: 10.3969/j.issn.0253-4339.2007.04.010 |
|
18 |
杨胜, 张颂, 张莉, 等. 螺旋扁管强化传热技术研究进展[J]. 冶金能源, 2010, 29 (3): 17- 22.
doi: 10.3969/j.issn.1001-1617.2010.03.005 |
YANG Sheng , ZHANG Song , ZHANG Li , et al. Review on enhanced heat transfer technology of spiral flat tube[J]. Energy for Metallurgical Industry, 2010, 29 (3): 17- 22.
doi: 10.3969/j.issn.1001-1617.2010.03.005 |
|
19 |
李志安, 任克华, 宿痴. 波纹管换热器设计标准介绍及相关问题的探讨[J]. 压力容器, 2007, 24 (4): 61- 64.
doi: 10.3969/j.issn.1001-4837.2007.04.013 |
LI Zhian , REN Kehua , SU Chi . Introduction of corrugated tubes heat exchanger design standard and discussion of interrelated problem[J]. Pressure Vessel Technology, 2007, 24 (4): 61- 64.
doi: 10.3969/j.issn.1001-4837.2007.04.013 |
|
20 |
焦凤, 邓先和. 矩形自支撑缩放管换热器强化传热的结构优化[J]. 化工学报, 2013, 64 (7): 2376- 2385.
doi: 10.3969/j.issn.0438-1157.2013.07.010 |
JIAO Feng , DENG Xianhe . Structural optimization of converging-diverging tube based on heat transfer enhancement for self-support rectangle heat exchanger[J]. CIESC Journal, 2013, 64 (7): 2376- 2385.
doi: 10.3969/j.issn.0438-1157.2013.07.010 |
|
21 |
ZHANG Cancan , WANG Dingbiao , REN Kun , et al. A comparative review of self-rotating and stationary twisted tape inserts in heat exchanger[J]. Renewable and Sustainable Energy Reviews, 2016, 53, 433- 449.
doi: 10.1016/j.rser.2015.08.048 |
22 |
刘文勤, 杨国蓉, 郭丽. 管内螺旋弹簧式插入物强化传热研究进展[J]. 当代化工研究, 2017, (4): 98- 99.
doi: 10.3969/j.issn.1672-8114.2017.04.055 |
LIU Wenqin , YANG Guorong , GUO Li . Research progress on heat transfer enhancement of helical spring inserts in tubes[J]. Modern Chemical Research, 2017, (4): 98- 99.
doi: 10.3969/j.issn.1672-8114.2017.04.055 |
|
23 |
PROMVONGE G , EIAMSA-ARD S . Enhancement of heat transfer in a tube with regularly-spaced helical tape swirl generators[J]. Solar Energy, 2005, 78 (4): 483- 494.
doi: 10.1016/j.solener.2004.09.021 |
24 |
NAPHON P . Heat transfer and pressure drop in the horizontal double pipes with and without twisted tape insert[J]. International Communications in Heat and Mass Transfer, 2006, 33 (2): 166- 175.
doi: 10.1016/j.icheatmasstransfer.2005.09.007 |
25 |
JAISANKAR S , RADHAKRISHNAN T K , SHEEBA K N . Experimental studies on heat transfer and friction factor characteristics of forced circulation solar water heater system fitted with helical twisted tapes[J]. Solar Energy, 2009, 83 (11): 1943- 1952.
doi: 10.1016/j.solener.2009.07.006 |
26 |
RAHIMI M , SHABANIAN S R , ALSAIRAFIl A A . Experimental and CFD studies on heat transfer and friction factor characteristics of a tube equipped with modified twisted tape inserts[J]. Chemical Engineering and Processing Process Intensification, 2009, 48 (3): 762- 770.
doi: 10.1016/j.cep.2008.09.007 |
27 |
NANAN K , YONGSIRI K , WONGCHAREE K , et al. Heat transfer enhancement by helically twisted tapes inducing co- and counter-swirl flows[J]. International Communications in Heat and Mass Transfer, 2013, 46, 67- 73.
doi: 10.1016/j.icheatmasstransfer.2013.05.015 |
28 |
NANAN K , THIANPONG C , PROMVONGE P , et al. Investigation of heat transfer enhancement by perforated helical twisted-tapes[J]. International Communications in Heat and Mass Transfer, 2014, 52, 106- 112.
doi: 10.1016/j.icheatmasstransfer.2014.01.018 |
29 |
PAL S , SAHA S K . Laminar flow and heat transfer through a circular tube having integral transverse corrugations and fitted with centre-cleared twisted-tape[J]. Experimental Thermal and Fluid Science, 2014, 57, 388- 395.
doi: 10.1016/j.expthermflusci.2014.06.008 |
30 | EIAMSA-ARD P , PIRIYARUNGROJ N , THIANPONG C , et al. A case study on thermal performance assessment of a heat exchanger tube equipped with regularly-spaced twisted tapes as swirl generators[J]. Case Studies in Thermal Engineering, 2014, (3): 86- 102. |
31 |
EIAMSA-ARD S , KONGKAITPAIBOON V , NANAN K . Thermohydraulics of turbulent flow through heat exchanger tubes fitted with circular-rings and twisted tapes[J]. Chinese Journal of Chemical Engineering, 2013, 21 (6): 585- 593.
doi: 10.1016/S1004-9541(13)60504-2 |
32 |
CHSNG SW , HUANG BJ . Thermal performances of tubular flows enhanced by ribbed spiky twist tapes with and without edge notches[J]. International Journal of Heat and Mass Transfer, 2014, 73, 645- 663.
doi: 10.1016/j.ijheatmasstransfer.2014.02.049 |
33 | 韩继广, 吴新, 周翼, 等. 管内插入扭带及螺旋线圈的传热与阻力特性试验研究[J]. 热能动力工程, 2012, 27 (4): 434- 438. |
HAN Jiguang , WU Xin , ZHOU Yi . Experimental study of the heat transfer and resistance characteristics of a tube internally inserted by a twisted tape and a spiral coil[J]. Journal of Engineering for Thermal Energy & Power, 2012, 27 (4): 434- 438. | |
34 |
LIU Xiaoqin , YU Jianlin , YAN Gang . A numerical study on the air-side heat transfer of perforated finned-tube heat exchangers with large fin pitches[J]. International Journal of Heat and Mass Transfer, 2016, 100, 199- 207.
doi: 10.1016/j.ijheatmasstransfer.2016.04.081 |
35 | 范继珩, 林力, 骆枫, 等. 开孔折流板对列管式换热器传热性能的影响研究[J]. 压力容器, 2020, 37 (2): 41- 50. |
FAN Jiheng , LIN Li , LUO Feng , et al. Study on the effect of holed-baffles on the heat transfer performance of tubular heat exchanger[J]. Pressure Vessel Technology, 2020, 37 (2): 41- 50. | |
36 |
AMALFI R L , VAKILI-FARAHANI F , THOME J R . Flow boiling and frictional pressure gradients in plate heat exchangers: part 1: review and experimental database[J]. International Journal of Refrigeration, 2016, 61, 166- 184.
doi: 10.1016/j.ijrefrig.2015.07.010 |
37 | DURMUS A , BENLI H , KURTBAS I , et al. Investigation of heat transfer and pressure drop in plate heat exchangers having different surface profiles[J]. International Journal of Heat and Mass Transfer, 2009, 52 (5): 1451- 1457. |
38 |
DOO J H , HA M Y , MIN J K , et al. An investigation of cross-corrugated heat exchanger primary surfaces for advanced intercooled-cycle aero engines: part-Ⅱ: design optimization of primary surface[J]. International Journal of Heat and Mass Transfer, 2013, 61, 138- 148.
doi: 10.1016/j.ijheatmasstransfer.2013.01.084 |
39 |
WAIS J , MIKIELEWICZ D . Influence of metallic porous microlayer on pressure drop and heat transfer of stainless steel plate heat exchanger[J]. Applied Thermal Engineering, 2016, 93, 1337- 1346.
doi: 10.1016/j.applthermaleng.2015.08.101 |
40 |
LUSHCHIK V G , MAKAROVA M S , RSEHMIN A I . Plate heat exchanger with diffuser channels[J]. High Temperature, 2020, 58 (3): 352- 359.
doi: 10.1134/S0018151X2003013X |
41 |
BRANDNNER J J , ANURJEW E , BOHN L , et al. Concepts and realization of microstructure heat exch-angers for enhanced heat transfer[J]. Experimental Thermal and Fluid Science, 2006, 30 (8): 801- 809.
doi: 10.1016/j.expthermflusci.2006.03.009 |
42 | 谢洪涛, 李星辰, 绳春晨, 等. 微通道换热器结构及优化设计研究进展[J]. 真空与低温, 2020, 26 (4): 310- 316. |
XIE Hongtao , LI Xingchen , SHENG Chunchen , et al. Progress in structure and optimal design of microchannel heat sink[J]. Vacuum and Cryogenics, 2020, 26 (4): 310- 316. | |
43 |
WANG Hongtao , CHEN Zhihua , GAO Jianguo . Infl-uence of geometric parameters on flow and heat transfer performance of micro-channel heat sinks[J]. Applied Thermal Engineering, 2016, 107, 870- 879.
doi: 10.1016/j.applthermaleng.2016.07.039 |
44 |
SALIMPOUR M R , SHARIFHASAN M , SHIRANI E . Constructal optimization of microchannel heat sinks with noncircular cross sections[J]. Heat Transfer Engineering, 2013, 34 (10): 863- 874.
doi: 10.1080/01457632.2012.746552 |
45 |
ESMAILI Q , RANJBAR A A , PORKHIAL S . Experimental analysis of heat transfer in ribbed microchannel[J]. International Journal of Thermal Science, 2018, 130, 140- 147.
doi: 10.1016/j.ijthermalsci.2018.04.020 |
46 |
DENG Daxiang , XIE Yanlin , HUANG Qinsong , et al. Flow boiling performance of Omega-shaped reentrant copper microchannels with different channel sizes[J]. Experimental Thermal and Fluid Science, 2015, 69, 8- 18.
doi: 10.1016/j.expthermflusci.2015.07.016 |
47 | GONG L J , KOTA K , TAO W , et al. Thermal performance of microchannels with wavy walls for electronics cooling[J]. IEEE Transactions on Components Packaging & Manufacturing Technology, 2011, 1 (7): 1029- 1035. |
48 |
DENG Daxiang , WAN Wei , QIN Yu , et al. Flow boiling enhancement of structured microchannels with micro pin fins[J]. International Journal of Heat and Mass Transfer, 2017, 105, 338- 349.
doi: 10.1016/j.ijheatmasstransfer.2016.09.086 |
49 |
KANDLIKAR S G . Review and projections of integrated cooling systems for three-dimensional integrated circuits[J]. Journal of Electronic Packaging, 2014, 136 (2): 024001.
doi: 10.1115/1.4027175 |
50 | GUPTA R , GEYER P E , FLETCHER D F , et al. Thermohydraulic performance of a periodic trapezoidal channel with a triangular cross-section[J]. International Journal of Heat & Mass Transfer, 2008, 51 (11): 2925- 2929. |
51 |
WEN Zhexi , LÜ Yigao , LI Qing . Comparative study on flow and heat transfer characteristics of sinusoidal and zigzag channel printed circuit heat exchangers[J]. Science China(Technological Sciences), 2020, 63 (4): 655- 667.
doi: 10.1007/s11431-019-1492-2 |
52 | 褚雯霄, 李雄辉, 马挺, 等. 不同肋片结构的印刷电路板换热器传热与阻力特性[J]. 科学通报, 2017, 62 (16): 1788- 1794. |
CHU Wenxiao , LI Xionghui , MA Ting , et al. Heat transfer and pressure drop performance of printed circuit heat exchanger with different fin structures[J]. Chinese Science Bulletin, 2017, 62 (16): 1788- 1794. | |
53 | 张灿灿. 换热管内强化传热、污垢特性及拓扑优化研究[D]. 郑州: 郑州大学, 2018. |
ZHANG Cancan. The research on heat transfer enhancement, fouling characteristics and topological optimization in heat exchanger tube[D]. Zhengzhou: Zhengzhou University, 2018. | |
54 | ARANI A , MORADI R . Shell and tube heat exchanger optimization using new baffle and tube configuration[J]. Applied Thermal Engineering, 2019, 157 (5): 113736. |
[1] | 刘涛,田野,马永志. 基于TRNSYS的双U型地埋管换热影响因素分析[J]. 山东大学学报 (工学版), 2019, 49(6): 113-118. |
[2] | 周慧琳,邱燕. 矩形蓄热单元内石蜡的相变传热特性[J]. 山东大学学报 (工学版), 2019, 49(4): 99-107. |
[3] | 张涛, 韩吉田, 闫素英, 于泽庭, 周然. 太阳能真空管的热性能分析与测试[J]. 山东大学学报(工学版), 2014, 44(4): 76-83. |
[4] | 程屾, 孙奉仲*. 渗层不锈钢管束表面真空下换热特性的实验分析[J]. 山东大学学报(工学版), 2014, 44(1): 90-94. |
[5] | 车翠翠,田茂诚*,冷学礼. 翼片诱导纵向涡强化层流对流传热数值模拟[J]. 山东大学学报(工学版), 2013, 43(5): 104-110. |
[6] | 张井志,田茂诚*,张冠敏,冷学礼. 板式换热器触点分布对换热阻力性能的影响[J]. 山东大学学报(工学版), 2012, 42(6): 121-126. |
[7] | 姜波1,田茂诚2*,郝卫东1, 刘福国1. 新型弹性管束固有振动特性实验及数值模拟[J]. 山东大学学报(工学版), 2012, 42(4): 132-136. |
[8] | 陆万鹏,史月涛,孙奉仲. 分离式热管换热器与低压省煤器的性能分析[J]. 山东大学学报(工学版), 2012, 42(2): 102-107. |
[9] | 田茂诚1, 姜波2,冷学礼1,程林1. 流体诱导新型弹性管束强化传热实验[J]. 山东大学学报(工学版), 2011, 41(5): 21-25. |
[10] | 唐玉峰,田茂诚,冷学礼. 螺旋槽管内流动换热场协同分析[J]. 山东大学学报(工学版), 2011, 41(2): 158-162. |
[11] | 崔永章1,2,田茂诚1,李广鹏2. 内置折边扭带圆管内三维流动与传热数值模拟[J]. 山东大学学报(工学版), 2010, 40(2): 143-148. |
[12] | 栾志坚,张冠敏,张俊龙,潘继红 . 波纹几何参数对人字形板式换热器内流动形态的影响机理[J]. 山东大学学报(工学版), 2007, 37(2): 34-37 . |
|