您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (4): 91-98.doi: 10.6040/j.issn.1672-3961.0.2020.539

• 电气工程 • 上一篇    下一篇

融合LSTM和SVM的钢铁企业电力负荷短期预测

亓晓燕1(),刘恒杰1,侯秋华1,刘啸宇1,谭延超1,王连成2,*()   

  1. 1. 国网莱芜供电公司, 山东 济南 271001
    2. 山东大学电气工程学院, 山东 济南 250061
  • 收稿日期:2020-12-22 出版日期:2021-08-20 发布日期:2021-08-18
  • 通讯作者: 王连成 E-mail:qxy_2001@sina.com;lwang@hisingpower.com
  • 作者简介:亓晓燕(1979—),女,山东济南人,高级工程师,主要研究方向为电力系统稳定运行与控制. E-mail:qxy_2001@sina.com
  • 基金资助:
    国网电力公司科技资助项目(5206121700MK)

Short-term load forecasting of iron and steel industry area based on combination model of SVM and LSTM

Xiaoyan QI1(),Hengjie LIU1,Qiuhua HOU1,Xiaoyu LIU1,Yanchao TAN1,Liancheng WANG2,*()   

  1. 1. Sate Grid Laiwu Power Company, Jinan 271001, Shandong, China
    2. School of Electrical Engineering, Shandong University, Jinan 250061, Shandong, China
  • Received:2020-12-22 Online:2021-08-20 Published:2021-08-18
  • Contact: Liancheng WANG E-mail:qxy_2001@sina.com;lwang@hisingpower.com

摘要:

为了解决大型钢铁企业电力用电对地区负荷冲击大, 电力负荷短期预测准确率低的问题, 提出一种融合长短期记忆网络(long short-term memory, LSTM)和支持向量机(support vector machine, SVM)的负荷短期预测算法。对钢铁工业地区负荷特性进行分析, 根据系统负荷的组成部分将负荷细分为冲击性负荷和其他负荷, 采用协方差和皮尔逊算法分别对负荷影响因子进行相关性分析和差异化处理; 选取历史负荷、温度、日期类型、钢价、电价、铁矿石价格6个属性作为负荷预测影响因素, 通过模糊权值逻辑将LSTM和SVM融合, 得到最终负荷预测结果。仿真试验结果表明, 所提出的预测方法相对于单独的LSTM或SVM, 可以更准确地预测钢铁工业地区的短期负荷。

关键词: 钢铁企业, 短期负荷, 长短期记忆网络, 支持向量机, 冲击性负荷

Abstract:

A short-term load forecasting algorithm combining long short-term memory (LSTM) and support vector machine (SVM) was proposed to solve the low accuracy problem of short-term load forecasting due to the large-scale iron and steel enterprise power consumption impact on regional load. The research thoroughly analyzed the load characteristics of the selected region with predominant iron and steel mill load, which divided the load into the impulse load and others based on its various components.Covariance algorithm and Pearson algorithm were used to analyze the correlation and differentiation of load influence factors. Six attributes of historical load, temperature, date type, steel price, electricity price and iron ore price were selected as load forecasting. The fuzzy weight assignment was used to fuse LSTM and SVM which got the final load forecasting result. The simulation results showed that the proposed method could predict the short-term load more accurately than the single LSTM or SVM.

Key words: iron and steel industry, short-term load forecasting, LSTM, SVM, impulse load

中图分类号: 

  • TM714

图1

钢铁企业日负荷曲线"

表1

负荷与影响因素相关性分析"

冲击性负荷影响因素名称
铁矿石期货价格 螺纹钢期货价格 气温 湿度 风向 负荷历史数据1 负荷历史数据2 周日期 风速 日类型
皮尔逊算法 0.356 7 0.335 6 0.301 0 0.453 7 0.167 8 0.612 0 0.534 0 0.109 1 0.100 8 0.556 1
协方差算法 0.400 0 0.350 0 0.320 0 0.510 2 0.058 9 0.699 8 0.467 8 0.110 0 0.088 1 0.410 0

表2

负荷预测输入"

输入量 描述
铁矿石期货价格 上一周铁矿石期货均价
螺纹钢期货价格 上一周铁螺纹钢期货均价
气温 t时刻的预测温度
湿度 t时刻的预测湿度
负荷历史数据1 预测日前30 d内的同时刻负荷
负荷历史数据2 预测时刻前24 h内各时刻负荷
日类型 工作日或者节假日, 以1/0表示

图2

稳定性负荷曲线"

表3

稳定性负荷与影响因素相关性"

稳定性负荷影响因素名称
钢价 日期类型 电价 气温
协方差算法 0.000 7 0.510 5 0.412 3 0.612 0
皮尔逊算法 0.000 2 0.489 0 0.453 4 0.587 4

表4

稳定性负荷预测输入"

输入量 描述
日类型 预测日前7 d的工作日或节假日类型, 以1/0表示
电价 预测日前7 d的电价
气温 预测日前7 d的温度
负荷历史 预测日前7 d的历史负荷

图3

LSTM神经元结构"

图4

模糊函数"

图5

4月15日负荷曲线"

图6

4月15日钢铁负荷占比"

表5

负荷预测准确率对比"

日期平均相对误差
LSTM SVM 组合算法
5月1日 1.81 2.84 1.74
5月2日 2.20 3.53 2.00
5月3日 1.98 2.06 1.50
5月4日 2.10 3.64 2.00
5月5日 2.98 2.20 1.97
5月6日 3.36 3.88 2.42
5月7日 2.06 2.87 1.69

图7

学习效率对训练次数以及MAPE的影响"

图8

MAPE函数"

图9

MAPE函数等高线"

图10

日负荷预测曲线"

1 康重庆, 夏清. 电力系统负荷预测[M]. 北京: 中国电力出版社, 2017.
2 LI B , ZHANG J , HE Y , et al. Short-term load forecasting method based on wavelet decomposition with second-order gray neural network model combined with ADF test[J]. IEEE Access, 2017, 5, 16324- 16331.
doi: 10.1109/ACCESS.2017.2738029
3 NOSE-FILHO K , LOTUFO A D P , MINUSSI C R . Short-term multimodal load forecasting using a modified general regression neural network[J]. IEEE Transactions on Power Delivery, 2011, 26 (4): 2862- 2869.
doi: 10.1109/TPWRD.2011.2166566
4 牛东晓, 谷志红, 邢棉, 等. 基于数据挖掘的SVM短期负荷预测方法研究[J]. 中国电机工程学报, 2006, 26 (18): 6- 12.
doi: 10.3321/j.issn:0258-8013.2006.18.002
NIU Xiaodong , GU Zhihong , XING Mian , et al. Study on forecasting approach to short-term load of SVM based on data mining[J]. Proceedings of the CSEE, 2006, 26 (18): 6- 12.
doi: 10.3321/j.issn:0258-8013.2006.18.002
5 赵登福, 王蒙, 张讲社, 等. 基于支撑向量机方法的短期负荷预测[J]. 中国电机工程学报, 2002, 22 (4): 27- 31.
ZHAO Dengfu , WANG Meng , ZHANG Jiangshe , et al. A support vector machine approach for short term load forecasting[J]. Proceedings of the CSEE, 2002, 22 (4): 27- 31.
6 王刚. 基于极限学习机的时间序列预测[D]. 沈阳: 沈阳工业大学, 2019.
WANG Gang. Time series prediction based on extreme learning machine[D]. Shenyang: Shenyang University of Technology, 2019.
7 YU X, XU Z, ZHOU X, et al. Load forecasting based on smart meter data and gradient boosting decision tree[C]// Proceeding of 2019 Chinese Automation Congress (CAC). Hangzhou: IEEE, 2019: 4438-4442.
8 XIE Z, WANG R, WU Z, et al. Short-term power load forecasting model based on fuzzy neural network using improved decision tree[C]//Proceeding of 2019 IEEE Sustainable Power and Energy Conference (iSPEC). Beijing: IEEE, 2019: 482-486.
9 谭忠良. 基于BP神经网络实现钢铁厂电力系统负荷预[J]. 冶金自动化, 2015, S1 (增刊1): 370- 372.
10 梁青艳, 孙彦广. 钢铁企业电力负荷动态预测建模问题的应用研究[J]. 科学技术与工程, 2018, 18 (16): 44- 54.
doi: 10.3969/j.issn.1671-1815.2018.16.008
LIANG Qingyan , SUN Yanguang . Investigation on application of electricity load dynamic forecast modelling in iron and steel enterprises[J]. Science Technology and Engineering, 2018, 18 (16): 44- 54.
doi: 10.3969/j.issn.1671-1815.2018.16.008
11 杨甲甲, 刘国龙, 赵俊华, 等. 采用长短期记忆深度学习模型的工业负荷短期预测方法[J]. 电力建设, 2018, 39 (10): 20- 27.
doi: 10.3969/j.issn.1000-7229.2018.10.003
YANG Jiajia , LIU Guolong , ZHAO Junhua , et al. A long short term memory based deep learning method for industrial load forecasting[J]. Electric Power Construction, 2018, 39 (10): 20- 27.
doi: 10.3969/j.issn.1000-7229.2018.10.003
12 李明, 王智灵, 杨晓宇, 等. 突变期电力负荷预测方法及其应用[J]. 电力系统自动化, 2006, (10): 93- 96.
doi: 10.3321/j.issn:1000-1026.2006.10.019
LI Ming , WANG Zhiling , YANG Xiaoyu , et al. Power load forecasting method and its application in abrupt change period[J]. Power System Automation, 2006, (10): 93- 96.
doi: 10.3321/j.issn:1000-1026.2006.10.019
13 毛勇华, 桂小林, 李前, 等. 深度学习应用技术研究[J]. 计算机应用研究, 2016, 33 (11): 3201- 3205.
doi: 10.3969/j.issn.1001-3695.2016.11.001
MAO Yonghua , GUI Xiaolin , LI Qian , et al. Study on application technology of deep learning[J]. Application Research of Computers, 2016, 33 (11): 3201- 3205.
doi: 10.3969/j.issn.1001-3695.2016.11.001
14 周林, 吕厚军. 人工神经网络应用于电力系统短期负荷预测的研究[J]. 四川电力技术, 2008, 31 (6): 68- 72.
doi: 10.3969/j.issn.1003-6954.2008.06.021
ZHOU Lin , LV Houjun . ANN application to short term load forecasting research of power system[J]. Sichuan Electric Power Technology, 2008, 31 (6): 68- 72.
doi: 10.3969/j.issn.1003-6954.2008.06.021
15 王晨辉, 张晓亮, 梁晓传. 云计算架构下基于BP神经网络负载预测策略的研究[J]. 电力信息与通信技术, 2016, 14 (11): 46- 50.
WANG Chenhui , ZHANG Xiaoliang , LIANG Xiaochuan . Research on load forecasting strategy based on BP neural network under cloud computing architectures[J]. Electric Power Information and Communication Technology, 2016, 14 (11): 46- 50.
16 谢伟, 赵琦, 郭乃网, 等. 改进的并行模糊核聚类算法在电力负荷预测的应用[J]. 电测与仪表, 2019, 56 (11): 49- 54.
XIE Wei , ZHAO Qi , GUO Naiwang , et al. Powered big data clustering algorithm based on multi-kernel fuzzy C-means clustering[J]. Electrical Measurement & Instrumentation, 2019, 56 (11): 49- 54.
17 张冠英, 羡一鸣, 葛磊蛟, 等. 经济新常态下基于Verhulst-SVM的中长期负荷预测模型[J]. 电测与仪表, 2019, 56 (1): 102- 107.
ZHANG Guanying , XIAN Yiming , GE Leijiao , et al. Medium and long term load forecasting model based on verhulst-svm under new normal economy[J]. Electrical Measurement & Instrumentation, 2019, 56 (1): 102- 107.
18 李永通, 陶顺, 赵蕾, 等. 基于短时间尺度相关性聚类的负荷预测[J]. 电测与仪表, 2019, 56 (16): 32- 38.
LI Yongtong , TAO Shun , ZHAO Lei , et al. Load forecasting based on short-term correlation clustering[J]. Electrical Measurement & Instrumentation, 2019, 56 (16): 32- 38.
19 陈振宇, 刘金波, 李晨, 等. 基于LSTM与XGBoost组合模型的超短期电力负荷预测[J]. 电网技术, 2020, 44 (2): 614- 620.
CHEN Zhenyu , LIU Jinbo , LI Chen , et al. Ultra short-term power load forecasting based on combined LSTM-XGBoost model[J]. Power System Technology, 2020, 44 (2): 614- 620.
20 王宁, 谢敏, 邓佳梁, 等. 基于支持向量机回归组合模型的中长期降温负荷预测[J]. 电力系统保护与控制, 2016, 44 (3): 92- 97.
WANG Ning , XIE Min , DENG Jialiang , et al. Mid-long term temperature-lowering load forecasting based on combination of support vector machine and multiple regression[J]. Power System Protection and Control, 2016, 44 (3): 92- 97.
21 刘玉田, 孙润稼, 王洪涛, 等. 人工智能在电力系统恢复中的应用综述[J]. 山东大学学报(工学版), 2019, 49 (5): 1- 8.
LIU Yutian , SUN Runjia , WANG Hongtao , et al. Review on application of artificial intelligence in power system restoration[J]. Journal of Shandong University (Engineering Science), 2019, 49 (5): 1- 8.
22 梁志祥, 刘晓明, 牟颖, 等. 基于深度学习的新能源爬坡事件预测方法[J]. 山东大学学报(工学版), 2019, 49 (5): 24- 28.
LIANG Zhixiang , LIU Xiaoming , MU Ying , et al. Prediction method of wind power and PV ramp event based on deep learning[J]. Journal of Shandong University (Engineering Science), 2019, 49 (5): 24- 28.
23 黄任可, 罗谌持, 张明. 基于粒子滤波器的大容量冲击负荷短期预测方法[J]. 电力系统自动化, 2009, 33 (3): 40- 45.
WANG Renke , LUO Chenchi , ZHANG Ming . Short-term forecasting of the high-capacity impact load based on particle filters[J]. Automation of Electric Power Systems, 2009, 33 (3): 40- 45.
24 李云飞, 张鹏, 程鹏飞, 等. 大数据挖掘下冲击性负荷特性电网短期负荷预测的探索与实践[J]. 电力大数据, 2019, 22 (4): 80- 86.
LI Yunfei , ZHANG Peng , CHENG Pengfei , et al. Exploration and practice of short-term load forecasting of power grid with impact load characteristics under big data mining[J]. Power Systems and Big Data, 2019, 22 (4): 80- 86.
25 赵威. 基于大数据的短期负荷预测关键技术研究[D]. 山东大学, 2019, 22(4): 80-86.
ZHAO Wei. Research on key technologies of short-term load forecasting based on big data[D]. Jinan: Shandong University, 2019, 22(4): 80-86.
26 张鑫. 基于支持向量机的能源管理系统短期负荷预测[D]. 长春: 长春工业大学, 2010.
ZHANG Xin. Short term load forecasting of energy management system based on support vector machine[D]. Changchun: Changchun University of Technology, 2010.
27 郑静, 杜秀华, 史新祈. 大型钢铁企业电力负荷的短期预测研究[J]. 电力需求侧管理, 2004, 6 (1): 18- 21.
ZHENG Jing , DU Xiuhua , SHI Xinqi . Research on short term load forecasting in steel enterprise[J]. Power Demand Management, 2004, 6 (1): 18- 21.
[1] 马昕,王雪. 基于Laplacian支持向量机和序列信息的microRNA-结合残基预测[J]. 山东大学学报 (工学版), 2020, 50(2): 76-82.
[2] 梁志祥,刘晓明,牟颖,刘玉田. 基于深度学习的新能源爬坡事件预测方法[J]. 山东大学学报 (工学版), 2019, 49(5): 24-28.
[3] 陈畅,李晓磊,崔维玉. 基于LSTM网络预测的水轮机机组运行状态检测[J]. 山东大学学报 (工学版), 2019, 49(3): 39-46.
[4] 严云洋,张慧珍,刘以安,高尚兵. 基于GMM与三维LBP纹理的视频火焰检测[J]. 山东大学学报 (工学版), 2019, 49(1): 1-9.
[5] 李兴,侯振杰,梁久祯,常兴治. 基于线性加速度的多节点人体行为识别[J]. 山东大学学报 (工学版), 2018, 48(6): 56-66.
[6] 叶明全,高凌云,万春圆. 基于人工蜂群和SVM的基因表达数据分类[J]. 山东大学学报(工学版), 2018, 48(3): 10-16.
[7] 韩学山,王俊雄,孙东磊,李文博,张心怡,韦志清. 计及空间关联冗余的节点负荷预测方法[J]. 山东大学学报(工学版), 2017, 47(6): 7-12.
[8] 刘岩,李幼军,陈萌. 基于EMD和SVM的抑郁症静息态脑电信号分类研究[J]. 山东大学学报(工学版), 2017, 47(3): 21-26.
[9] 李素姝,王士同,李滔. 基于LS-SVM与模糊补准则的特征选择方法[J]. 山东大学学报(工学版), 2017, 47(3): 34-42.
[10] 刘杰, 杨鹏, 吕文生, 刘阿古达木, 刘俊秀. 基于气象因素的PM2.5质量浓度预测模型[J]. 山东大学学报(工学版), 2015, 45(6): 76-83.
[11] 刘晓勇. 一种基于树核函数的半监督关系抽取方法研究[J]. 山东大学学报(工学版), 2015, 45(2): 22-26.
[12] 浩庆波, 牟少敏, 尹传环, 昌腾腾, 崔文斌. 一种基于聚类的快速局部支持向量机算法[J]. 山东大学学报(工学版), 2015, 45(1): 13-18.
[13] 李发权, 杨立才, 颜红博. 基于PCA-SVM多生理信息融合的情绪识别方法[J]. 山东大学学报(工学版), 2014, 44(6): 70-76.
[14] 周咏梅1,杨佳能2,阳爱民2. 面向文本情感分析的中文情感词典构建方法[J]. 山东大学学报(工学版), 2013, 43(6): 27-33.
[15] 王昊,华继学,范晓诗. 基于双联支持向量机的入侵检测技术[J]. 山东大学学报(工学版), 2013, 43(6): 53-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[2] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[3] 施来顺,万忠义 . 新型甜菜碱型沥青乳化剂的合成与性能测试[J]. 山东大学学报(工学版), 2008, 38(4): 112 -115 .
[4] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[5] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[6] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[7] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .
[8] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[9] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111 -116 .
[10] 秦通,孙丰荣*,王丽梅,王庆浩,李新彩. 基于极大圆盘引导的形状插值实现三维表面重建[J]. 山东大学学报(工学版), 2010, 40(3): 1 -5 .