山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (2): 83-90.doi: 10.6040/j.issn.1672-3961.0.2019.262
Shengnan ZHANG(),Lei WANG*(),Chunhong CHANG,Benli HAO
摘要:
针对传统的块匹配去噪方法只能处理二维图像的缺点,提出一种基于三维剪切波变换和改进的三维块匹配过滤(block-matching and 4D filtering, BM4D)算法的图像去噪方法。利用三维剪切波变换得到变换域系数,通过硬阈值和维纳滤波,在变换域中实现联合过滤。经过多尺度分解和方向剖分两个滤波阶段,确保三维剪切波变换是局部的;进行硬阈值和维纳滤波,分别包括分组、协同过滤和聚合3个步骤,利用堆积成四维组的体素立方体,在该组的四维变换同时利用每个立方体中体素之间存在的局部相关性和不同立方体中相应体素之间的非局部相关性。通过三维剪切波逆变换,得到每个分组立方体的估计值,在它们的原始位置进行自适应聚合。以峰值信噪比和结构相似度作为评价标准,试验结果表明:该方法不仅能够有效去除高噪声环境下的图像噪声,而且还能够有效地改善图像的视觉效果,具有较高的准确性。
中图分类号:
1 | 陶永鹏, 景雨, 顼聪. 基于分组字典与变分模型的图像去噪算法[J]. 计算机应用, 2019, 39 (2): 551- 555. |
TAO Yongpeng , JING Yu , XU Cong . Image denoising algorithm based on grouped dictionary and variational model[J]. Computer Application, 2019, 39 (2): 551- 555. | |
2 | SUN Yongkui , TAN Wen , CHEN Tongwen . A method to remove chattering alarms using median filters[J]. ISA Transactions, 2018, 73 (1): 201- 207. |
3 | 李志良, 苏佳, 高丽慧, 等. 基于维纳滤波的主动噪声控制实验研究[J]. 科技风, 2018, (15): 216- 217. |
LI Zhiliang , SU Jia , GAO Lihui , et al. Experimental study on active noise control based on wiener filtering[J]. Technology Wind, 2018, (15): 216- 217. | |
4 | 陈波, 丁宁, 边境, 等. BM3D去噪算法在仪表图像识别中的应用[J]. 浙江电力, 2019, 38 (3): 54- 58. |
CHEN Bo , DING Ning , BIAN Jing , et al. Application of BM3D denoising algorithms in instrument image recognition[J]. Zhejiang Eelectric Power, 2019, 38 (3): 54- 58. | |
5 | 张雯雯, 韩裕生. 基于非局部自相似性的低秩稀疏图像去噪[J]. 计算机应用, 2018, 38 (9): 2696- 2700. |
ZHANG Wenwen , HAN Yusheng . Low rank sparse image denoising based on non-local self-similarity[J]. Computer Application, 2018, 38 (9): 2696- 2700. | |
6 | 徐苏, 周颖玥. 基于图像分割的非局部均值去噪算法[J]. 计算机应用, 2017, 37 (7): 2078- 2083. |
XU Su , ZHOU Yingyue . Non-local mean denoising based on image segmentation[J]. Computer Application, 2017, 37 (7): 2078- 2083. | |
7 | 刘宇, 陈胜. 医学图像分割方法综述[J]. 电子科技, 2017, 30 (8): 169- 172. |
LIU Yu , CHEN Sheng . Summary of medical image segmentation methods[J]. Electronic Technology, 2017, 30 (8): 169- 172. | |
8 | 王瑞, 张友纯. 新阈值函数下的小波阈值去噪[J]. 计算机工程与应用, 2013, 49 (15): 215- 218. |
WANG Rui , ZHANG Youchun . Wavelet threshold denoising under new threshold function[J]. Computer Engineering and Application, 2013, 49 (15): 215- 218. | |
9 | MURAMATSU S , FURUYA K , YUKI N . Multidimensional nonseparable oversampled lapped transforms: theory and design[J]. IEEE Transactions on Signal Processing, 2017, 65 (5): 1251- 1264. |
10 | 段立娟, 武春丽, 恩擎, 等. 基于小波域的深度残差网络图像超分辨率算法[J]. 软件学报, 2019, 30 (4): 941- 953. |
DUAN Lijuan , WU Chunli , EN Qing , et al. Super- resolution algorithm of depth residual network image based on wavelet domain[J]. Journal of Software, 2019, 30 (4): 941- 953. | |
11 | SUN L , JENO B , ZHENG Y , et al. A novel weighted cross total variation method for hyperspectral image mixed denoising[J]. IEEE Access, 2017, 6 (1): 172- 188. |
12 | FAN F , MA Y , LI C , et al. Hyperspectral image denoising with superpixel segmentation and low-rank representation[J]. Information Sciences, 2017, 397, 48- 68. |
13 | 马红强, 马时平, 许悦雷, 等. 基于改进栈式稀疏去噪自编码器的图像去噪[J]. 计算机工程与应用, 2018, 54 (4): 199- 204. |
MA Hongqiang , MA Shiping , XU Yuelei , et al. Image denoising based on improved stack sparse denoising self-encoder[J]. Computer Engineering and Application, 2018, 54 (4): 199- 204. | |
14 | 肖佳, 张俊华, 梅礼晔. 基于改进BM3D算法的椒盐噪声去噪[J]. 计算机工程与应用, 2018, 54 (21): 170- 175. |
XIAO Jia , ZHANG Junhua , MEI Liye . Denoising of salt and pepper noise based on improved BM3D algorithm[J]. Computer Engineering and Application, 2018, 54 (21): 170- 175. | |
15 | LIN Tinglan , TUNG Kunhsien , FANG Guanjie , et al. Optimized backlight power saving algorithm using joint power-PSNR characteristics among multiple frames[J]. Journal of Display Technology, 2016, 12 (12): 1506- 1503. |
16 | ZHAO Tiesong , WANG Jiheng . SSIM-based coarse-grain scalable wideo coding[J]. IEEE Transactions on Broadcasting, 2015, 2 (61): 210- 221. |
17 | WELINTON C, TIAGO N, GABRIEL B, et al. Improving non-local video denoising with local binary patterns and image quantization[C]// 2016 29th SIBGRAPI Conference on Graphics. Massachusetts, USA: Patterns and Images, 2016: 1-9. |
18 | LIN Xiangbo, QIU Tianshuang. Denoise MRI images using sparse 3D transformation domain collaborative filtering[C]// 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI). Shanghai: IEEE, 2011: 233-236. |
19 | 杨戴天杙. PRI_NLM3D降噪算法在CBCT三维图像中的应用研究[J]. 全国射线数字成像与CT新技术, 2012, 10 (8): 99- 108. |
YANG Daitianyi . Application of PRI_NLM3D denoising algorithms in CBCT 3D images[J]. New National Radiographic Digital Imaging and CT Technology, 2012, 10 (8): 99- 108. | |
20 | XU Ping , CHEN Bingqiang , XUE Lingyun , et al. A new MNF-BM4D denoising algorithm based on guided filtering for hyperspectral images[J]. ISA Transactions, 2019, 2 (3): 1- 10. |
[1] | 陈德蕾,王成,陈建伟,吴以茵. 基于门控循环单元与主动学习的协同过滤推荐算法[J]. 山东大学学报 (工学版), 2020, 50(1): 21-27,48. |
[2] | 胡云,张舒,李慧,佘侃侃,施珺. 基于信任网络重构的推荐算法[J]. 山东大学学报 (工学版), 2019, 49(2): 42-46. |
[3] | 黄丹,王志海,刘海洋. 一种局部协同过滤的排名推荐算法[J]. 山东大学学报(工学版), 2016, 46(5): 29-36. |
[4] | 林耀进,张佳,林梦雷,王娟. 一种基于模糊信息熵的协同过滤推荐方法[J]. 山东大学学报(工学版), 2016, 46(5): 13-20. |
[5] | 李朔,石宇良. 基于位置社交网络中地点聚类推荐方法[J]. 山东大学学报(工学版), 2016, 46(3): 44-50. |
[6] | 庞俊涛, 张晖, 杨春明, 李波, 赵旭剑. 基于概率矩阵分解的多指标协同过滤算法[J]. 山东大学学报(工学版), 2016, 46(3): 65-73. |
[7] | 张佳,林耀进,林梦雷,刘景华,李慧宗. 基于信息熵的协同过滤算法[J]. 山东大学学报(工学版), 2016, 46(2): 43-50. |
[8] | 陈大伟,闫昭*,刘昊岩. SVD系列算法在评分预测中的过拟合现象[J]. 山东大学学报(工学版), 2014, 44(3): 15-21. |
[9] | 孙远帅,陈垚,刘向荣,陈珂,林琛. 基于项目层次相似性的推荐算法[J]. 山东大学学报(工学版), 2014, 44(3): 8-14. |
[10] | 李改1,2,3, 李磊2,3. 一种解决协同过滤系统冷启动问题的新算法[J]. 山东大学学报(工学版), 2012, 42(2): 11-17. |
[11] | 王爱国,李廉*,杨静,陈桂林. 一种基于Bayesian网络的网页推荐算法[J]. 山东大学学报(工学版), 2011, 41(4): 137-142. |
|