山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (6): 107-112.doi: 10.6040/j.issn.1672-3961.0.2019.061
Yu LIU(),Shenjie ZHOU*(),Kanghui WU
摘要:
为探究双层压电微梁固有特性随特征尺寸的变化规律,应用含挠曲电效应的压电偶应力理论,建立双层压电微梁动态性能尺寸效应理论模型,求解双层压电微梁的固有频率,通过数值分析讨论微梁无量纲固有频率的尺寸依赖性,研究压电效应和挠曲电效应对微梁无量纲固有频率的影响。数值分析结果表明:双层压电微梁的无量纲固有频率随着梁厚度的减小而增大,呈现出明显的尺寸依赖性;与不计力电耦合效应的结果相比,双层压电微梁无量纲固有频率的尺寸依赖性更为明显,主要是由挠曲电效应引起的,而压电效应的影响很小。
中图分类号:
1 |
SOHI A N , NIEVA P M . Frequency response of curved bilayer microcantilevers with applications to surface stress measurement[J]. Journal of Applied Physics, 2016, 119 (4): 044503.
doi: 10.1063/1.4940951 |
2 |
BEGLEY M R . The impact of materials selection and geometry on multi-functional bilayer micro-sensors and actuators[J]. Journal of Micromechanics and Microengineering, 2005, 15 (12): 2379- 2388.
doi: 10.1088/0960-1317/15/12/021 |
3 | DING G , ZHANG Y , YANG C , et al. Electrochemical microactuator based on hydrogen-absorbing film: the principle and first results[J]. Proc Spie, 2001, 104 (10): 312- 317. |
4 | 韦笑梅, 黄银燕. 智能梁振动分析的修正Fourier级数方法[J]. 广西工学院学报(自然科学版), 2010, 21 (4): 75- 80. |
WEI Xiaomei , HUANG Yinyan . Vibration analysis of a smart beam via modified Fourier series[J]. Journal of Guangxi University of Technology(Natural Science), 2010, 21 (4): 75- 80. | |
5 | 林晓辉, 苏雅璇, 周志东, 等. 电学开路挠曲电悬臂梁自振频率分析[J]. 力学季刊, 2018, 39 (2): 383- 394. |
LIN Xiaohui , SU Yaxuan , ZHOU Zhidong , et al. Analysis of the natural frequency for flexoelectric cantilever beams under the open-circuit condition[J]. Chinese Quarterly of Mechanics, 2018, 39 (2): 383- 394. | |
6 |
ZUKBO P , CATALAN G , TAGANTSEV AK . Flexoelectric effect in solids[J]. Annual Review of Materials Research, 2013, 43 (1): 387- 421.
doi: 10.1146/annurev-matsci-071312-121634 |
7 |
YUDIN PV , TAGANTSEV AK . Fundamentals of flexoelectricity in solids[J]. Nanotechnology, 2013, 24 (43): 432001.
doi: 10.1088/0957-4484/24/43/432001 |
8 | XINGJIA L , YING L . Flexoelectric effect on vibration of piezoelectric microbeams based on a modified couple stress theory[J]. Shock and Vibration, 2017, 2017, 1- 7. |
9 |
WANG G F , YU S W , FENG X Q . A piezoelectric constitutive theory with rotation gradient effects[J]. European Journal of Mechanics, 2004, 23 (3): 455- 466.
doi: 10.1016/j.euromechsol.2003.12.005 |
10 |
HADJESFANDIARI A R . Size-dependent piezoelectricity[J]. International Journal of Solids and Structures, 2013, 50 (18): 2781- 2791.
doi: 10.1016/j.ijsolstr.2013.04.020 |
11 |
LI Anqing , ZHOU Shenjie , QI Lu , et al. A flexoelectric theory with rotation gradient effects for elastic dielectrics[J]. Modelling and Simulation in Materials Science and Engineering, 2016, 24 (1): 015009.
doi: 10.1088/0965-0393/24/1/015009 |
12 | 吴康辉.含挠曲电效应的横观各向同性压电材料偶应力理论[D].济南:山东大学机械工程学院, 2018. |
WU Kanghui. A couple stress theory including flexoelectric effects for transversely isotropic piezoelectric materials[D]. Jinan: School of Mechanical Engineering, Shandong University, 2018. | |
13 |
YAN Z , JJIANG L Y . Flexoelectric effect on the electroelastic responses of bending piezoelectric nanobeams[J]. Journal of Applied Physics, 2013, 113 (19): 194102.
doi: 10.1063/1.4804949 |
14 |
SAHMANI S , BAHRAMI M . Size-dependent dynamic stability analysis of microbeams actuated by piezoelectric voltage based on strain gradient elasticity theory[J]. Journal of Mechanical Science and Technology, 2015, 29 (1): 325- 333.
doi: 10.1007/s12206-014-1239-3 |
15 | LI Z , WANG H , ZHENG S . Bending and free vibration of functionally graded piezoelectric microbeams based on the modified couple stress theory[J]. Annals of Solid and Structural Mechanics, 2018, 10 (1): 1- 16. |
16 |
BENI T , YAGHOUB . Size-dependent analysis of piezoelectric nanobeams including electro-mechanical coupling[J]. Mechanics Research Communications, 2016, 75, 67- 80.
doi: 10.1016/j.mechrescom.2016.05.011 |
17 |
ZHENG Y , CHEN T , CHEN C . A size-dependent model to study nonlinear static behavior of piezoelectric cantilever microbeams with damage[J]. Microsystem Technologies, 2017, 23 (10): 4679- 4686.
doi: 10.1007/s00542-016-3246-z |
18 | TOUPIN R A . Elastic materials with couple-stresses[J]. Archive for Rational Mechanics & Analysis, 1962, 11 (1): 385- 414. |
19 | 李安庆, 周慎杰, 周莎莎. 双层微梁固有特性的尺寸效应[J]. 工程力学, 2014, 31 (7): 223- 228. |
LI Anqing , ZHOU Shenjie , ZHOU Shasha . The size-dependent inherent property of bilayered micro-beams[J]. Engineering Mechanics, 2014, 31 (7): 223- 228. | |
20 |
DENG Q . Size-dependent flexoelectric response of a truncated cone and the consequent ramifications for the experimental measurement of flexoelectric properties[J]. Journal of Applied Mechanics, 2017, 84 (10): 101007.
doi: 10.1115/1.4037552 |
21 | MARANGANTI R , SHARMA P . Atomistic determination of flexoelectric properties of crystalline dielectrics[J]. Physical Review B, 2009, 80 (5): 1956- 1960. |
[1] | 魏守水,江兴娥,白光磊,姜春香 . 直管形行波微流体驱动模型的模态与谐响应分析[J]. 山东大学学报(工学版), 2006, 36(6): 67-70 . |
|