您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (6): 63-72.doi: 10.6040/j.issn.1672-3961.0.2019.173

• 控制科学与工程——机器人专题 • 上一篇    下一篇

基于超混沌同步控制的移动机器人全覆盖路径规划

李彩虹(),方春,王志强,夏斌,王凤英   

  1. 山东理工大学计算机科学与技术学院, 山东 淄博 255000
  • 收稿日期:2019-04-16 出版日期:2019-12-20 发布日期:2019-12-17
  • 作者简介:李彩虹(1970—),女,山东招远人,博士,教授,主要研究方向为智能机器人、人工智能. E-mail:lich@sdut.edu.cn
  • 基金资助:
    国家自然基金资助项目(61473179);国家自然基金资助项目(61602280);山东省自然科学基金资助项目(ZR2017MF047);淄博市校城融合发展计划项目(2018ZBXC295)

Complete coverage path planning for mobile robots based on hyperchaotic synchronization control

Caihong LI(),Chun FANG,Zhiqiang WANG,Bin XIA,Fengying WANG   

  1. School of Computer Science and Technology, Shandong University of Technology, Zibo 255000, Shandong, China
  • Received:2019-04-16 Online:2019-12-20 Published:2019-12-17
  • Supported by:
    国家自然基金资助项目(61473179);国家自然基金资助项目(61602280);山东省自然科学基金资助项目(ZR2017MF047);淄博市校城融合发展计划项目(2018ZBXC295)

摘要:

针对移动机器人执行警戒、巡逻等特殊任务的随机性、遍历性等需求,提出一种基于超混沌同步控制的移动机器人全覆盖路径规划方法。以四维超混沌Lorenz系统为主驱动方程,利用单边耦合同步控制构造超混沌同步响应方程;将同步后的超混沌同步响应方程与移动机器人运动学方程相结合,构造混沌机器人路径规划器,产生满足特殊任务要求的全覆盖遍历轨迹;利用镜面映射方法对覆盖轨迹运行范围进行限制和对运行边界进行静态避障。对规划轨迹进行定性分析和定量计算发现,与同步以前的超混沌方程相比,利用超混沌同步方法构造后产生的全覆盖轨迹具有更好的遍历覆盖特性和随机特性,能够满足自主移动机器人执行警戒、巡逻等特殊任务的需求。

关键词: 移动机器人, 超混沌Lorenz系统, 超混沌同步控制, 全覆盖路径规划, 镜面映射, 特殊任务

Abstract:

Based on the requirements of randomness and completeness of the mobile robots under special tasks such as the surveillance, patrol, etc., a complete coverage path planning method for robots by the hyperchaotic synchronization control strategy was proposed. The four-dimensional hyperchaotic Lorenz system was used as the main driving equation, and the hyperchaotic synchronization response equation was constructed by the single-coupled hyperchaotic synchronization control. A path planner of the chaotic robot was constructed by combining synchronized hyperchaotic synchronous response system with kinematics equation of mobile robot to produce the complete coverage path and satisfy the requirements of the special tasks. The mirror mapping method was used to limit the running range of the coverage trajectory and to avoid the static obstacles at the workspace boundary. Qualitative analysis and quantitative calculations of the planned trajectories showed that the coverage trajectories produced by hyperchaotic synchronization method had better coverage rate and randomness, which could meet the requirements of autonomous mobile robots for special tasks.

Key words: mobile robot, hyperchaotic Lorenz system, hyperchaotic synchronization control, complete coverage path planning, mirror mapping, special tasks

中图分类号: 

  • TP242.6

图1

Lyapunov指数谱λ分别随参数c和d变化的取值"

图2

三变量的相空间(或吸引子)"

图3

4个变量的时序图"

图4

超混沌主方程及响应方程的相图及同步情况"

图5

超混沌方程对应变量的同步"

图6

超混沌系统单边同步误差的变化情况"

图7

机器人在同步前(xi)和同步后(yi)后产生的覆盖轨迹"

表1

有/无同步控制的规划路径覆盖率对比"

是否有同步控制 覆盖率/%
i=1 i=2 i=3 i=4
无(xi) 16.50 10.50 25.25 12.75
有(yi) 35.75 35.50 44.75 30.00

图8

规划轨迹对初始值的敏感特性"

图9

镜面映射原理"

图10

给定运行区域的遍历覆盖轨迹"

图11

y1变量的规划轨迹"

图12

y2变量的规划轨迹"

图13

y3变量的规划轨迹"

图14

y4变量的规划轨迹"

表2

规划轨迹覆盖率"

迭代次数n 覆盖率/%
y1 y2 y3 y4
5 000 86.00 81.50 78.50 78.25
10 000 98.75 93.50 94.75 94.75

图15

给定区域里覆盖轨迹对初始值的敏感性"

1 李伟莉, 赵东辉. 基于栅格法与神经元的机器人全区域覆盖算法[J]. 机械设计与制造, 2017, (8): 232- 234.
doi: 10.3969/j.issn.1001-3997.2017.08.065
LI Weili , ZHAO Donghui . Complete coverage path planning for mobile robot based on grid method and neuronal[J]. Machinery Design & Manufacture, 2017, (8): 232- 234.
doi: 10.3969/j.issn.1001-3997.2017.08.065
2 郭典新, 高龙琴, 李志昂, 等. 割草机器人全覆盖式路径规划平台设计与实现[J]. 现代制造工程, 2018, (11): 50- 53.
GUO Dianxin , GAO Longqin , LI Zhiang , et al. Mowing robot full coverage path planning platform design and implementation[J]. Modern Manufacturing Engineering, 2018, (11): 50- 53.
3 PARK E , KIM K J , DEL P , et al. Energy efficient complete coverage path planning for vacuum cleaning robots[J]. Lecture Notes in Electrical Engineering: Future Information Technology: Applicationand Service, 2012, 164 (1): 23- 31.
4 CURIAC D I , BANIAS O , VOLOSENCU C , et al. Novel bioinspired approach based on chaotic dynamics for robot patrolling missions with adversaries[J]. Entropy, 2018, 20 (5): 1- 17.
5 PEITGEN H O , JVRGENS H , SAUPE D . Chaos and fractals: new Frontiers of science[M]. New York, America: Springer, 2004.
6 SEKIGUCHI A , NAKAMURA Y . The chaotic mobile robot[J]. IEEE International Conference on Intelligent Robots and Systems, 1999, 1999 (1): 172- 178.
7 VOLOS CH K , KYPRIANIDIS I M , STOUBOULOS I N . Experimental investigation on coverage performance of a chaotic autonomous mobile robot[J]. Robotics and Autonomous Systems, 2013, 61 (12): 1314- 1322.
doi: 10.1016/j.robot.2013.08.004
8 FAHMY A A . Performance evaluation of chaotic mobile robot controllers[J]. International Transaction Journal of Engineering, Management & Applied Sciences & Technologies, 2012, 3 (2): 145- 158.
9 CURIAC D I , VOLOSENCU C . Path planning algorithm based on arnold cat map for surveillance UAVs[J]. Defence Science Journal, 2015, 65 (6): 483- 488.
doi: 10.14429/dsj.65.8483
10 MARTINS-FILHO L S , MACAU E E N . Patrol mobile robots and chaotic trajectories[J]. Mathematical Problems in Engineering, 2007, 2007, 1- 13.
11 LI C H , WANG ZH Q , FANG CH , et al. An integrated algorithm of CCPP task for autonomous mobile robot under special missions[J]. International Journal of Computational Intelligence Systems, 2018, 2018 (11): 1357- 1368.
12 LI C H , SONG Y , WANG F Y , et al. A chaotic coverage path planner of the mobile robot based on the Chebychev map for special missions[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18 (9): 1305- 1319.
13 LI C H , SONG Y , WAGN F Y , et al. A bounded strategy of the mobile robot coverage path planning based on Lorenz chaotic system[J]. International Journal of Advanced Robotic Systems, 2016, 2016 (5): 1- 9.
14 SHEN CH W , YU S M , LV J H , et al. A systematic methodology for constructing hyperchaotic systems with multiple positive Lyapunov exponents and circuit implementation[J]. IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 2014, 61 (3): 854- 864.
doi: 10.1109/TCSI.2013.2283994
15 SOLAMI E A , AHMAD M , VOLOS C , et al. A new hyperchaotic system-based design for efficient bijective substitution-boxes[J]. Entropy, 2018, 20 (525): 1- 17.
16 朱道宇. 一个新的超混沌系统的叉型分支和复杂动力学[J]. 贵州大学学报(自然科学版), 2017, 34 (3): 10- 14.
ZHU Daoyu . Pitchfork bifurcation and complex dynamics of a new hyperchaotic system[J]. Journal of Guizhou University(Natural Science), 2017, 34 (3): 10- 14.
17 PAULO C R . Hyperchaos and quasiperiodicity from a four-dimensional system based on the Lorenz system[J]. European Physical Journal B, 2017, 90 (251): 1- 7.
18 温贺平. 正弦驱动的chen超混沌系统动力学特性及其电路仿真[J]. 合肥工业大学学报(自然科学版), 2018, 41 (8): 1046- 1051.
doi: 10.3969/j.issn.1003-5060.2018.08.008
WEN Heping . Dynamic characteristics and circuit simulation of Chen hyperchaotic system driven by sine wave[J]. Journal of Hefei University of Technology (Natural Science), 2018, 41 (8): 1046- 1051.
doi: 10.3969/j.issn.1003-5060.2018.08.008
19 THABET H, SEDDIK H. Generating a hyper-chaotic system from 3D chaotic behaivor[C]//2nd International Conference on Advanced Technologies for Signal and Image Processing. Monastir, Tunisia: Institute of Electrical and Electronics Engineers Inc, 2016: 46-51.
20 SHEN CH W , YU S M , L J H , et al. Constructing hyperchaotic systems at will[J]. International Journal of Circuit Theory and Applications, 2015, 43 (12): 2039- 2056.
doi: 10.1002/cta.2062
21 FALLAHI K , LEUNG H . A cooperative mobile robot task assignment and coverage planning based on chaos synchronization[J]. International Journal of Bifurcation and Chaos, 2010, 20 (1): 161- 176.
doi: 10.1142/S021812741002548X
22 陈杰睿, 冯平, 许泽凯. 一种单信道超混沌保密通信的实现[J]. 计算机与数字工程, 2017, 45 (8): 1566- 1568.
doi: 10.3969/j.issn.1672-9722.2017.08.022
CHEN Jierui , FENG Ping , XU Zekai . Implementation of a secure communication based on single-hannel synchronization of hyperchaos[J]. Computer & Digital Engineering, 2017, 45 (8): 1566- 1568.
doi: 10.3969/j.issn.1672-9722.2017.08.022
23 FAHIM H M. Synchronization of hyperchaotic systems with application to secure communication[C]//9th Annual IEEE International Systems Conference. Vancouver, BC, Canada: Institute of Electrical and Electronics Engineers Inc., 2015: 121-126.
24 AMMAR S , ABDELKRIM B , SALAH L . Prediction-based feedback control and synchronization algorithm of fractional-order chaotic systems[J]. Nonlinear Dynamics, 2016, 85 (4): 2183- 2206.
doi: 10.1007/s11071-016-2823-0
25 MAO B X . Four methods for sliding mode synchronization of fractional new hyperchaotic system[J]. Paper Asia, Compendium5, 2018, 2018 (1): 118- 122.
26 SUNDARAPANDIAN V , TAHER A A , ABDESSELEM B . A novel 4-D hyperchaotic system with two quadratic nonlinearities and its adaptive synchronisation[J]. International Journal of Automation and Control, 2018, 12 (1): 5- 26.
doi: 10.1504/IJAAC.2018.088612
27 VOLOS C K , KYPRIANIDIS I M , IOANNIS N , et al. Cooperation of autonomous mobile robots for surveillance missions based on hyperchaos synchronization[J]. Journal of Applied Mathematics & Bioinformatics, 2016, 6 (3): 125- 143.
[1] 刘美珍,周风余,李铭,王玉刚,陈科. 基于模型不确定补偿的轮式移动机器人反演复合控制[J]. 山东大学学报 (工学版), 2019, 49(6): 36-44.
[2] 严宣辉, 肖国宝*. 基于定长实数路径编码机制的移动机器人路径规划[J]. 山东大学学报(工学版), 2012, 42(1): 59-65.
[3] 田国会,张涛涛*,吴皓,薛英花,周风余. 基于分布式导航信息的大范围环境机器人导航[J]. 山东大学学报(工学版), 2011, 41(1): 24-31.
[4] 李贻斌1,李彩虹1,2,宋勇1. 基于模糊神经网络的移动机器人自适应行为设计[J]. 山东大学学报(工学版), 2010, 40(2): 28-33.
[5] 牛君,李贻斌,宋锐 . 一种基于激光信息的移动机器人两步自定位方法[J]. 山东大学学报(工学版), 2007, 37(3): 46-50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[2] 秦通,孙丰荣*,王丽梅,王庆浩,李新彩. 基于极大圆盘引导的形状插值实现三维表面重建[J]. 山东大学学报(工学版), 2010, 40(3): 1 -5 .
[3] 孙从征,管从胜,秦敬玉,程川 . 铝合金化学镀镍磷合金结构和性能[J]. 山东大学学报(工学版), 2007, 37(5): 108 -112 .
[4] 徐晓丹, 段正杰, 陈中育. 基于扩展情感词典及特征加权的情感挖掘方法[J]. 山东大学学报(工学版), 2014, 44(6): 15 -18 .
[5] 高厚磊 田佳 杜强 武志刚 刘淑敏. 能源开发新技术——分布式发电[J]. 山东大学学报(工学版), 2009, 39(5): 106 -110 .
[6] 孟健, 李贻斌, 李彬. 四足机器人跳跃步态控制方法[J]. 山东大学学报(工学版), 2015, 45(3): 28 -34 .
[7] 张道强. 知识保持的嵌入方法[J]. 山东大学学报(工学版), 2010, 40(2): 1 -10 .
[8] 马士伟 梅志荣 张军伟 杜俊. 岩溶隧道涌突水灾害预警与防治技术[J]. 山东大学学报(工学版), 2009, 39(4): 12 -16 .
[9] 张霄 李术才 张庆松 刘钦 张宁 刘斌. TSP信号采集质量影响因素的现场试验研究[J]. 山东大学学报(工学版), 2009, 39(4): 25 -29 .
[10] 方炜, , 姜长生, , 钱承山 . 一类非线性不确定时滞系统的模糊跟踪控制[J]. 山东大学学报(工学版), 2007, 37(5): 47 -52 .