您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (4): 108-114.doi: 10.6040/j.issn.1672-3961.0.2018.476

• 机械与能动工程 • 上一篇    下一篇

纳米结构中浸入特性的非平衡分子动力学模拟

胡浩威1,2(),刘爽1,方廷勇1   

  1. 1. 安徽建筑大学环境与能源工程学院, 安徽 合肥 230601
    2. 西安交通大学热流科学与工程教育部重点实验室, 陕西 西安 710049
  • 收稿日期:2018-11-06 出版日期:2019-08-20 发布日期:2019-08-06
  • 作者简介:胡浩威(1986—),男,山东潍坊人,讲师,博士,主要研究方向为冷凝传热、微纳尺度热质传递. E-mail:huhaoweihhw@foxmail.com
  • 基金资助:
    国家自然科学基金资助项目(51806003);安徽省自然科学基金资助项目(1808085QE164);安徽省高校自然科学研究基金资助项目(KJ2017A488);热流科学与工程教育部重点实验室(西安交通大学)开放基金

Non-equilibrium molecular dynamics simulation of the influence of nanostructures on water infiltration characteristics

Haowei HU1,2(),Shuang LIU1,Tingyong FANG1   

  1. 1. School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, Anhui, China
    2. Key Laboratory of Thermo-Fluid Science and Engineering of MOE, Xi′an Jiaotong University, Xi′an 710049, Shanxi, China
  • Received:2018-11-06 Online:2019-08-20 Published:2019-08-06
  • Supported by:
    国家自然科学基金资助项目(51806003);安徽省自然科学基金资助项目(1808085QE164);安徽省高校自然科学研究基金资助项目(KJ2017A488);热流科学与工程教育部重点实验室(西安交通大学)开放基金

摘要:

为明晰复杂纳米通道内流体流动规律,采用分子动力学方法研究压力驱动作用下不同润湿性纳米通道的液态水浸入特性。建立液态水/不同润湿性纳米通道的非平衡态分子动力学模型,研究驱动压大小、壁面润湿性及纳米粗糙元结构对液态水浸入特性的影响规律。模拟结果表明:相同驱动压条件下,液态水易于浸入亲水性纳米结构通道内,相比于光滑纳米通道,纳米粗糙元结构凸显液态水的表面张力作用,提高液态水持续浸入纳米通道的驱动压;纳米粗糙元结构对液态水浸入速度以及密度分布均有影响,纳米粗糙元距离入口处越近,浸入过程的阻力越大,即液态水浸入纳米通道内的体积通量越小,研究结果为明晰复杂纳米通道内液态水输运的微观机理提供理论基础。

关键词: 浸入特性, 表面张力, 纳米结构, 分子动力学, 润湿性

Abstract:

To clarify the law of fluid flow in a complex nanochannel, the molecular dynamics method was employed to investigate the infiltration characteristic of pressure-driven droplet into the nanochannel with different wettability. The nonequilibrium molecular dynamics model of liquid water/nanochannel with different wettability was established to study effects of driving pressure, surface wettability, and nanoscale roughness on infiltration characteristics. The simulation results indicated that droplets more rapidly entered into the hydrophilic nanochannel than the hydrophobic nanochannel under an identical driving pressure. And compared to the smooth nanochannel, effects of the surface tension of the droplet was obvious due to the structures of nanoscale roughness. Simultaneously, it could be found that the nanoscale roughness had a certain impact on both droplet infiltration velocity and density profiles. As the distance between the nanoscale roughness and nanochannel entrance decreased, the flow resistance in the infiltration process of droplets improved. It suggested that the volumetric flux of the infiltration of water into the nanochannels was reduced. The findings could provide a theoretical basis for uncovering the transport mechanism of liquid water in the complex nanochannel.

Key words: infiltration characteristic, surface tension, nanostructure, molecular dynamics, wettability

中图分类号: 

  • TK121

表1

SW模型中各系数的数值大小"

系数ABpqγaθ0/(°)λ
数值7.050.604.000.001.201.80109.4723.15

图1

不同润湿性壁面的接触角大小"

图2

模拟液态水浸入过程的几何模型"

图3

不同驱动压作用时液态水浸入疏水与亲水性纳米结构通道内的动态过程"

图4

不同驱动压作用时浸入纳米通道内的水分子数目"

图5

浸入纳米通道内的液态水沿z方向的数密度分布"

图6

三种不同的纳米粗糙元通道模型"

图7

3种模型在驱动压为50 MPa时液态水浸入纳米结构通道内的动态过程"

图8

浸入3种不同纳米结构通道内的水分子数目"

图9

不同位置粗糙元时浸入纳米通道内液态水沿z方向的数密度分布"

图10

液态水浸入不同纳米结构通道内的单位面积体积通量"

1 徐超, 何雅玲, 王勇. 纳米通道滑移流动的分子动力学模拟研究[J]. 工程热物理学报, 2005, 26 (6): 912- 914.
doi: 10.3321/j.issn:0253-231X.2005.06.004
XU Chao , HE Yaling , WANG Yong . Molecular dynamics studies of velocity slip phenomena in a nanochannel[J]. Journal of Engineering Thermophysics, 2005, 26 (6): 912- 914.
doi: 10.3321/j.issn:0253-231X.2005.06.004
2 向恒, 姜培学, 刘其鑫, 等. 纳米通道内液体流动的分子动力学研究[J]. 工程热物理学报, 2008, 29 (9): 1557- 1560.
doi: 10.3321/j.issn:0253-231X.2008.09.032
XIANG Heng , JIANG Peixue , LIU Qixin , et al. Molecular dynamics investigation of fluid flow in nanochannels[J]. Journal of Engineering Thermophysics, 2008, 29 (9): 1557- 1560.
doi: 10.3321/j.issn:0253-231X.2008.09.032
3 FENG J , LIAO Q , ZHU X , et al. Molecular dynamics simulation of injection of polyethylene fluid in a variable cross-section nano-channel[J]. Chinese Science Bulletin, 2011, 56 (17): 1848- 1856.
doi: 10.1007/s11434-010-4317-7
4 胡海豹, 何强, 鲍路瑶, 等. 二级规则微结构对低表面能纳米通道内微流动的影响[J]. 机械工程学报, 2014, 50 (12): 165- 170.
HU Haibao , HE Qiang , BAO Luyao , et al. Effect of secondary regular microstructure on the micro-flows in nano-channel with low surface energy[J]. Journal of Mechanical Engineering, 2014, 50 (12): 165- 170.
5 WANG L , WU H , WANG F . Efficient transport of droplet sandwiched between saw-tooth plates[J]. Journal of Colloid and Interface Science, 2016, 462, 280- 287.
doi: 10.1016/j.jcis.2015.09.071
6 HU H W , TANG G H , NIU D . Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery[J]. Scientific Reports, 2016, 6, 27274-1- 27274-10.
7 李云, 胡浩威. 润湿性对纳米多孔陶瓷膜输运性能的影响[J]. 化工学报, 2017, 68 (9): 3474- 3481.
LI Yun , HU Haowei . Effect of wettability on nanoporous ceramic membrane for condensate transport performance[J]. CIESC Journal, 2017, 68 (9): 3474- 3481.
8 PU J H , LI G X , TANG G H , et al. The effect of chemical functionalisation on nanoporous energy absorption system[J]. Molecular Simulation, 2017, 43 (17): 1442- 1447.
doi: 10.1080/08927022.2017.1319057
9 CHEN C , CHEN Y F , SHA J J , et al. Molecular dynamics simulation of ion transportation through graphene nanochannels[J]. Journal of Southeast University, 2017, 33 (2): 171- 176.
10 张忠强, 李冲, 刘汉伦, 等. 石墨烯碳纳米管复合结构渗透特性的分子动力学研究[J]. 物理学报, 2018, 67 (5): 056102-1- 056102-8.
ZHANG Zhongqiang , LI Chong , LIU Hanlun , et al. Molecular dynamics study on permeability of water in graphene-carbon nanotube hybrid structure[J]. Acta Physica Sinica, 2018, 67 (5): 056102-1- 056102-8.
11 ZHANG K , WANG F H , LU Y J . Molecular dynamics simulation of continuous nanoflow transport through the uneven wettability channel[J]. AIP Advances, 2018, 8 (1): 015111-1- 015111-10.
12 王胜, 徐进良, 张龙艳. 非对称纳米通道内流体流动与传热的分子动力学[J]. 物理学报, 2017, 66 (20): 193- 200.
WANG Sheng , XU Jinliang , ZHANG Longyan . Molecular dynamics simulation of fluid flow and heat transfer in an asymmetric nano channel[J]. Acta Physica Sinica, 2017, 66 (20): 193- 200.
13 XIE H , LIU C . Molecular dynamics simulations of gas flow in nanochannel with a Janus interface[J]. AIP Advances, 2012, 2 (4): 042126-1- 042126-8.
14 BAO F B , HUANG Y L , QIU L M , et al. Applicability of molecular dynamics method to the pressure-driven gas flow in finite length nano-scale slit pores[J]. Molecular Physics, 2015, 113 (6): 561- 569.
doi: 10.1080/00268976.2014.960495
15 BAO F B , HUANG Y L , ZHANG Y H , et al. Investigation of pressure-driven gas flows in nanoscale channels using molecular dynamics simulation[J]. Microfluidics & Nanofluidics, 2015, 18 (5/6): 1075- 1084.
16 韩强, 祁影霞. 纳米通道内气体流动特性的分子动力学研究[J]. 能源工程, 2017, (6): 14- 19.
HAN Qiang , QI Yingxia . Molecular dynamics investigation of gas flow in nanochannel[J]. Energy Engineering, 2017, (6): 14- 19.
17 王禹贺, 祁影霞, 韩强. 壁面粗糙度及弯曲纳米通道对气体流动特性影响的分子动力学研究[J]. 制冷技术, 2018, 38 (1): 12- 18.
doi: 10.3969/j.issn.2095-4468.2018.01.103
WANG Yuhe , QI Yingxia , HAN Qiang . Molecular dynamics study on influences of wall roughness and curved nanochannel on gas flow characteristics[J]. Chinese Journal of Refrigeration Technology, 2018, 38 (1): 12- 18.
doi: 10.3969/j.issn.2095-4468.2018.01.103
18 张冉, 谢文佳, 常青, 等. 纳米通道内气体剪切流动的分子动力学模拟[J]. 物理学报, 2018, 67 (8): 084701-1- 084701-11.
ZHANG Ran , XIE Wenjia , CHANG Qing , et al. Molecular dynamics simulations of surface effects on Couette gas flows in nanochannels[J]. Acta Physica Sinica, 2018, 67 (8): 084701-1- 084701-11.
19 STILLINGER F H , WEBER T A . Computer simulation of local order in condensed phases of silicon[J]. Physical Review B, 1985, 31 (8): 5262- 5271.
doi: 10.1103/PhysRevB.31.5262
20 SOLVEYRA E G , DE LA LLAVE E , SCHERLIS D A , et al. Melting and crystallization of ice in partially filled nanopores[J]. The Journal of Physical Chemistry B, 2011, 115 (48): 14196- 14204.
doi: 10.1021/jp205008w
21 MOORE E B , MOLINERO V J . Growing correlation length in supercooled water[J]. The Journal of Chemical Physics, 2009, 130 (24): 244505-1- 244505-12.
22 MOLINERO V , MOORE E B . Water modeled as an intermediate element between carbon and silicon[J]. Journal of Physical Chemistry B, 2009, 113 (13): 4008- 4016.
doi: 10.1021/jp805227c
23 MOORE E B , DE LA LLAVE E , WELKE K , et al. Freezing, melting and structure of ice in a hydrophilic nanopore[J]. Physical Chemistry Chemical Physics, 2010, 12 (16): 4124- 4134.
doi: 10.1039/b919724a
[1] 崔青,张长桥,修建新,许士明,卢丽丽. 稠油沥青质胶质降粘机理的分子动力学模拟[J]. 山东大学学报(工学版), 2017, 47(2): 123-130.
[2] 白艳艳,曹月欣,张宪玺,张鲁格,孙德志,延辉,张翀. SDS对香豆素在SB-16胶束增溶行为影响[J]. 山东大学学报(工学版), 2016, 46(3): 99-105.
[3] 王丽娟, 石静, 赵方剑. 气液界面上磺基甜菜碱两性表面活性剂分子动力学模拟[J]. 山东大学学报(工学版), 2014, 44(6): 83-89.
[4] 石静1,2,吕凯2,苑世领2*. 支链烷基苯磺酸盐在油水界面的分子动力学模拟[J]. 山东大学学报(工学版), 2012, 42(2): 77-82.
[5] 吕伟,吴莉莉,徐润春,吴佑实,盖红德,邹科 . 二维纳米结构——氧化铋纳米片的制备与表征[J]. 山东大学学报(工学版), 2008, 38(1): 109-112 .
[6] 吕 伟,吴莉莉,邹 科,吴佑实 . 氮化镓低维纳米结构的制备与表征[J]. 山东大学学报(工学版), 2007, 37(1): 10-14 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111 -116 .
[2] 孙从征,管从胜,秦敬玉,程川 . 铝合金化学镀镍磷合金结构和性能[J]. 山东大学学报(工学版), 2007, 37(5): 108 -112 .
[3] 王佰伟,曹升乐 . 工业废水治理效果多目标评价方法研究[J]. 山东大学学报(工学版), 2007, 37(3): 89 -92 .
[4] 丑武胜 王朔. 大刚度环境下力反馈主手自适应算法研究[J]. 山东大学学报(工学版), 2010, 40(1): 1 -5 .
[5] 曹刚 董朝阳 黄洁宝 薛禹胜. 应用FACTS装置实现电力系统区间震荡阻尼控制[J]. 山东大学学报(工学版), 2009, 39(3): 31 -36 .
[6] 李贻斌,阮久宏,刘鲁源,宋 锐,荣学文 . 车辆纵向加速度自抗扰控制研究[J]. 山东大学学报(工学版), 2008, 38(4): 1 -04 .
[7] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[8] 孙殿柱,朱昌志,李延瑞 . 散乱点云边界特征快速提取算法[J]. 山东大学学报(工学版), 2009, 39(1): 84 -86 .
[9] 杨发展1 ,艾兴1 ,赵军1 ,侯建锋2 . ZrO2含量对WC基复合材料的力学性能和微观结构的影响[J]. 山东大学学报(工学版), 2009, 39(1): 92 -95 .
[10] 曲延鹏,陈颂英,李春峰,王小鹏,滕书格 . 低压大流量自激脉冲清洗喷嘴内部气液两相流数值模拟[J]. 山东大学学报(工学版), 2006, 36(4): 16 -20 .