您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (2): 72-80.doi: 10.6040/j.issn.1672-3961.0.2017.610

• • 上一篇    下一篇

基于双核处理器的主动磁悬浮轴承容错控制架构

程鑫1,2,刘晗1,2*,王博1,2,梁典1,2,陈强1,2   

  1. 1. 武汉理工大学机电工程学院, 湖北 武汉 430070;2. 湖北省磁悬浮轴承工程技术研究中心, 湖北 武汉 430070
  • 收稿日期:2017-09-14 出版日期:2018-04-20 发布日期:2017-09-14
  • 通讯作者: 刘晗(1993— ),男,湖北荆州人,硕士研究生,主要研究方向为磁悬浮轴承的容错控制. E-mail: han.liu@whut.edu.cn E-mail:Chengx@whut.edu.cn
  • 作者简介:程鑫(1982— ),男,湖北武汉人,副教授,博导,主要研究方向为磁悬浮轴承的故障诊断与容错控制.E-mail: Chengx@whut.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(51575411);中央高校基本科研业务费专项资助项目(2017III046、2017III044)

A fault-tolerant control architecture for active magnetic bearing based on dual core processor

CHENG Xin1,2, LIU Han1,2*, WANG Bo1,2, LIANG Dian1,2, CHEN Qiang1,2   

  1. 1. School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China;
    2. Hubei Maglev Engineering Technology Research Center, Wuhan 430070, Hubei, China
  • Received:2017-09-14 Online:2018-04-20 Published:2017-09-14

摘要: 为了满足针对多自由度磁悬浮支承系统的故障诊断与实时控制需求,提出一种基于异构的双核处理器ARM+DSP架构。硬件配置上以数字信号处理器(digital signal processing, DSP)作为从处理器执行多个环路的故障监测;而高级精简指令集处理器(advanced RISC Machines, ARM)作为主控制器执行转子位置控制算法,并根据从控制器的故障重构控制器而实现容错;软件结构上提出基于双核处理器的信息交互、任务分配与执行的设计方法,设计了双向中断来协调控制与监控代码间的执行时序。试验得到系统故障诊断与实时容错控制仅需1.8 ms,能够满足系统需求。试验结果证明了本研究所提出架构的有效性。

关键词: 故障诊断, 双向中断通讯, 主动磁轴承, 容错控制, 双核处理器, 共享数据交互

Abstract: To satisfy the fault diagnosis of multi degree of freedom magnetic bearing system and the real-time control requirements, an ARM+DSP based heterogeneous dual core processor architecture was proposed. In hardware configuration, DSP was used as the fault monitoring to execute multiple loops, ARM was used as the main controller to implement the rotor position control algorithm, and the fault-tolerant controller was implemented according to the fault reconfiguration of the controller. In software architecture, a method of information interaction, task allocation and execution based on dual core processor was proposed, and bidirectional interrupt was designed to coordinate the execution sequence between control and monitoring code. In the experiment, the system fault diagnosis and real time fault tolerant control needed only 1.8 ms. Experiment results showed the effectiveness of the proposed architecture.

Key words: fault tolerant control, active magnetic bearing, shared data interaction, dual core processor, fault diagnosis, dual-direction interrupted communication

中图分类号: 

  • TP277
[1] 李媛媛,朱熀秋,朱利东,等. 磁悬浮轴承发展及关键技术研究现状[J]. 微机电,2014,47(6):69-73. LI Yuanyuan, ZHU Huangqiu, ZHU Lidong, et al. Development and key technology research status of magnetic suspension bearing[J]. Microelectrical Mechanical System, 2014, 47(6):69-73.
[2] MASLEN E H, MEEKER D C. Fault tolerance of magnetic bearings by generalized bias current linearization[J]. IEEE Transactions on Magnetics, 1995, 31(3):2304-2314.
[3] MEEKER D C. Optimal solutions to the inverse problem in quadratic magnetic actuators[D]. Charlottesville, America: University of Virginia, 1996.
[4] MASLEN E H, SORTORE C K, GILLIES G T, et al. Fault tolerant magnetic bearings[J]. ASME Journal of Engineering for Gas Turbines and Power, 1999, 121(3):504-508.
[5] NA U J, PALAZZOLO A. Optimized realization of fault-tolerant heteropolar magnetic bearings[J]. ASME Journal of Vibration and Acoustics, 2000, 122(3):209-221.
[6] NA U J, PALAZZOLO A, PROVENZA A. Test and theory correlation study for a flexible rotor on fault-tolerant magnetic bearings[J]. ASME Journal of Vibration and Acoustics, 2002, 124(3):359-366.
[7] NA U J, PALAZZOLO A. The fault-tolerant control of magnetic bearings with reduced controller outputs[J]. ASME Journal of Dynamic Systems Measurement and Control, 2001, 123(2):219-224.
[8] NA U J. Fault-tolerant control of heteropolar magnetic bearings[D]. Charlottesville, America: Texas A & M University, 1999.
[9] LI Minghsiu, PALAZZOLO A, KENNY A, et al. Fault-tolerant homopolar magnetic bearings[J]. IEEE Transactions on Magnetics, 2004, 40(5): 3308-3318.
[10] SCHRODER P, CHIPPERFIELD A J, FLEMING P J, et al. Fault tolerant control of active magnetic bearings[J]. IEEE International Symposium on Industrial Electronics, 1998: 573-578.
[11] CHENG X, CHEN Q, ZENG H, et al. Reconfiguration rules for loosely-coupled redundant supporting structure in radial magnetic bearings[J]. International Journal of Applied Electromagnetics and Mechanics, 2016, 51(2):91-106.
[12] CHENG X, LIU H, SONG S, et at. Reconfiguration of tightly-coupled redundant supporting structure in active magnetic bearings under the failures of electromagnetic actuators[J]. International Journal of Applied Electromagnetics and Mechanics, 2017, 54(1):421-432.
[13] CHENG X, WANG B, CHEN Q, et at. A unified design and the current ripple characteristic analysis of digital switching power amplifier in active magnetic-levitated bearings [J]. International Journal of Applied Electromagnetics and Mechanics, 2017, 55(1):1-17.
[14] 吴步洲,孙岩桦,王世琥,等. 径向电磁轴承线圈容错控制研究[J]. 机械工程学报,2005,41(6):157-162. WU Buzhou, SUN Yanhua, WANG Shihu, et al. Research on fault tolerant control of radial electromagnetic bearing coils[J]. Journal of Mechanical Engineering, 2005, 41(6):157-162.
[15] 崔东辉,徐龙祥. 基于坐标变换的径向主动磁轴承容错控制[J]. 控制与决策,2010,25(9):1420-1425. CUI Donghui, XU Longxiang. Fault tolerant control of radial active magnetic bearing based on coordinate transformation[J]. Control and Decision, 2010, 25(9):1420-1425.
[16] 纪历,徐龙祥,唐文斌. 磁悬浮轴承数字控制器故障诊断与处理[J]. 中国机械工程,2010,21(3):289-295. JI Li, XU Longxiang, TANG Wenbin. Fault diagnosis and treatment for AMB digital controller[J]. China Mechanical Engineering, 2010, 21(3):289-295.
[17] 周祖德,库少平,胡业发. 电磁轴承多传感器故障诊断研究[J]. 中国机械工程,2005,16(1):57-59. ZHOU Zude, KUI Shaoping, HU Yefa. Study on fault diagnosis of the multi-sensors of magnetic bearings[J]. China Mechanical Engineering, 2005, 16(1):57-59.
[18] 程鑫,吴华春,胡业发,等. 并行多处理器运动控制系统中的分布式存储机制[J]. 中国机械工程,2014,25(8):1041-1046. CHENG Xin, WU Huachun, HU Yefa, et al. Distributed memory mechanism in parallel multiprocessor motion control system[J]. China Mechanical Engineering, 2014, 25(8):1041-1046.
[19] CHENG X, WU H C. High-performance real-time bus in parallel processing system[J]. Applied Mechanics and Materials, 2013, 278-280(5):1043-1046.
[20] 程鑫. 多轴超精密同步运动控制系统中的数据交互机制[J]. 机械工程学报,2014,50(17):149-156. CHENG Xin. Data interchange mechanism in multi-axis ultra-precise synchronous motion control system[J]. Journal of Mechanical Engineering, 2014, 50(17):149-156.
[21] 程鑫,吴华春. 基于DSM的可重构多DSP并行处理架构 [J]. 华中科技大学学报(自然科学版),2012,40(S2):83-86. CHENG Xin, WU Huachun. Reconfigurable multi-DSP parallel computing architecture based on DSM [J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2012, 40(S2):83-86.
[22] 程鑫,周云飞. 针对多轴精密同步运动控制的并行计算架构设计[J]. 中国机械工程,2011,22(18):2156-2162. CHENG Xin, ZHOU Yunfei. Design of parallel computing architecture for multi-axis ultra-precise synchronous motion control[J]. Journal of Mechanical Engineering, 2011, 22(18):2156-2162.
[23] 栾小飞. OMAPL138双核系统的调试方案设计[J]. 单片机与嵌入式系统应用,2012(1):16-19. LUAN Xiaofei. Debugging method based on OMAPL138 dual-core system[J]. Application of Single Chip Computer and Embedded System, 2012(1):16-19.
[24] 郭盟,尹志辉,钱世俊. 基于OMAPL138的双核通信研究及应用[J]. 工业控制计算机,2015,28(11):46-49. GUO Meng, YIN Zhihui, QIAN Shijun. Research and application of dual-core communication based on OMAPL138[J]. Industrial Control Computer, 2015, 28(11):46-49.
[25] 范林涛,王骜. 基于OMAPL138平台的串口LCD Linux驱动设计[J]. 计算机与网络,2015, 41(14):42-44. FAN Lintao, WANG Ao. Design and implementation of serial LCD linux driver based on OMAPL138 platform [J]. Computer and Network, 2015, 41(14):42-44.
[1] 程鑫,张林,胡业发,陈强,梁典. 基于电流特性的主动磁轴承电磁线圈故障诊断[J]. 山东大学学报(工学版), 2018, 48(4): 94-101.
[2] 王秀青,曾慧,解飞,吕峰. 基于Spiking神经网络的机械臂故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 15-21.
[3] 叶丹,张天予,李奎. 全局信息未知的多智能体自适应容错包容控制[J]. 山东大学学报(工学版), 2017, 47(5): 1-6.
[4] 宋洋,钟麦英. 基于改进距离相似度的故障可分离性分析方法[J]. 山东大学学报(工学版), 2017, 47(5): 103-109.
[5] 李炜,王可宏,曹慧超. 基于新型ESF的一类非线性系统故障滤波方法[J]. 山东大学学报(工学版), 2017, 47(5): 7-14.
[6] 毛海杰,李炜,王可宏,冯小林. 基于自抗扰的多电机转速同步系统传感器故障切换容错策略[J]. 山东大学学报(工学版), 2017, 47(5): 64-70.
[7] 褚振忠,朱大奇. 基于自适应区域跟踪的自主式水下机器人容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 57-63.
[8] 黄成凯,杨浩,姜斌,程舒瑶. 一类复杂网络的协同容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 203-209.
[9] 邱路,叶银忠,姜春娣. 基于小波奇异熵和SOM神经网络的微电网系统故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 118-122.
[10] 谢晓龙,姜斌,刘剑慰,蒋银行. 基于滑模观测器的异步电动机速度传感器故障诊断及容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 210-214.
[11] 王梦园,张雄,马亮,彭开香. 基于因果拓扑图的工业过程故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 187-194.
[12] 孙源呈,姚利娜. 不确定奇异随机分布系统的故障诊断和容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 238-245.
[13] 李明虎,李钢,钟麦英. 动态核主元分析在无人机故障诊断中的应用[J]. 山东大学学报(工学版), 2017, 47(5): 215-222.
[14] 刘卓,王天真,汤天浩,冯页帆,姚君琦,高迪驹. 一种多电平逆变器故障诊断与容错控制策略[J]. 山东大学学报(工学版), 2017, 47(5): 229-237.
[15] 吴建萍,姜斌,刘剑慰. 基于小波包信息熵和小波神经网络的异步电机故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 223-228.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!