您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (1): 89-95.doi: 10.6040/j.issn.1672-3961.0.2017.057

• • 上一篇    下一篇

T型管内两相流分配特性数值模拟

王丹华,张冠敏*,冷学礼,徐梦娜,韩圆圆   

  1. 山东大学能源与动力工程学院, 山东 济南 250061
  • 收稿日期:2017-02-19 出版日期:2018-02-20 发布日期:2017-02-19
  • 通讯作者: 张冠敏(1973— ),男,山东潍坊人,教授,博士,主要研究方向为传热强化及节能技术. E-mail:zhgm@sdu.edu.cn E-mail:dfdxrygh@qq.com
  • 作者简介:王丹华(1992— ),女,山东青岛人,硕士研究生,主要研究方向为传热强化及流体分布. E-mail:dfdxrygh@qq.com
  • 基金资助:
    国家自然科学基金资助项目(31380005131503)

The numerical simulation of two-phase flow distribution characteristics in T-tube

WANG Danhua, ZHANG Guanmin*, LENG Xueli, XU Mengna, HAN Yuanyuan   

  1. School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
  • Received:2017-02-19 Online:2018-02-20 Published:2017-02-19

摘要: T型管内气液两相流分配不均易导致换热器偏流和受热不均。为了优化T型管内气液两相流流动,以FLUENT为模拟软件,以流体流动参数和管子几何结构为研究变量,对T型管内流体流动进行数值模拟。发现流体入口液相体积分数越大,入口速度越小,液滴粒径越小,越利于流体均布;同时支管衔接处采取弯管结构较直管结构优越,其中入口速度对流体分布影响最明显,速度相差3个数值即可优化两个出口液相体积分数比差10%左右。结果表明,相应改变流体流动参数和管子几何结构能有效优化T型管内流体流动。

关键词: 流动参数, 流体均布, 气液两相流, 数值模拟, 几何结构

Abstract: Uneven distribution of gas-liquid two-phase flow in T-tube was easy to cause bias flow and uneven heating in heat exchangers. To optimize the gas-liquid two-phase flow in T-tube, the simulation about influences of flow parameters and tubes geometric structure on distribution of two-phase flow characteristics in T-tube was carried out by FLUENT. It was found that higher volume fraction of liquid phase and slower inlet velocity, and a smaller diameter of liquid drops facilitate even distribution of fluid. Meanwhile, the elbow structure was better than a straight tube at joints of branch tubes, the inlet velocity had most obvious influence on flow distribution, the difference of three units in speed could result in around 10% variation in volume fraction ration between two outlets. The results showed that change the flow parameters and tubes geometric structure correspond could optimize fluid flow in T-tube effectively.

Key words: uniform fluid distribution, flow parameters, geometric structure, numerical simulation, gas-liquid two-phase flow

中图分类号: 

  • TK121
[1] MUELLER A C. Effects of some types of maldistribution on the performance of heat exchangers[J]. Heat Transfer Engineering,1987, 8(2):75-86.
[2] MUELLER A C, CHIOU J P. Review of various types of flow maldistribution in heat exchanger[J]. Heat Transfer Engineering, 1988, 9(2):36-50.
[3] SIVERT V. Two-phase flow distribution in heat exchanger mainfolds[D]. Trondheim, Norway: Norwegian University of Science and Technology, 2003.
[4] MOHAMMAD A, GEORGES B, PIERRE M. General characteristics of two-phase flow distribution in a compact heat exchanger[J]. International Journal of Heat and Mass Transfer, 2009, 52(1-2):442-450.
[5] 杨康,刘吉普,马雯波.基于FLUENT软件的T型三通管湍流数值模拟[J].化工装备技术, 2008, 29(4):33-36. YANG Kang, LIU Jipu, MA Wenbo. The turbulence numerical simulation of T-tube based on FLUENT software[J]. Chemical Equipment Technology, 2008, 29(4):33-36.
[6] 赵铎.水平管内气液两相流流型数值模拟与实验研究[D].青岛:中国石油大学,2007. ZHAO Duo. Numerical simulation and experimental research on flow pattern of gas-liquid flow in horizontal pipe[D]. Qingdao: China University of Petroleum, 2007.
[7] 罗永浩,杨世铭,王孟浩.T型进口三通对分配联箱流量分配的影响[J].动力工程,1998,18(3):29-33. LUO Yonghao, YANG Shiming, WANG Menghao. The influence of T-tube on distribution of flux in distribution header[J]. Power Engineering, 1998, 18(3):29-33.
[8] 罗永浩,杨世铭.锅炉集箱支管流动机理探讨[J].锅炉技术,1997(4):11-13. LUO Yonghao, YANG Shiming. The flow mechanism of boiler header pipe[J]. Boiler Technology, 1997(4): 11-13.
[9] MASAHIRO O, TOMOYUKI H, SACHIYO H. Water flow distribution in horizontal header contaminated with bubbles[J]. International Journal of Multiphase Flow, 1999, 25(5):827-840.
[10] 缪正清,徐通模.集箱与并联管屏系统单相流体的流动特性[J].上海交通大学学报,2000,34(9):1206-1210. MIU Zhengqing, XU Tongmo. The fluid flow characteristics of single phase in header and parallel tube system[J]. Journal of Shanghai JiaoTong University, 2000, 34(9):1206-1210.
[11] WANG C C, YANG K S, TSAI J S, et al. Characteristics of flow distribution in compact parallel flow heat exchangers part I: typical inlet header[J]. Applied Thermal Engineering, 2011, 31:3226-3242.
[12] CHARRON Y, WHALLEY P B. Gas-liquid annular flow at a vertical tee junction-part flow separation[J]. Multiphase Flow, 1995, 21(4):569-589.
[13] CHIOU J P. The effect of nonuniform fluid flow distribution on the thermal performance of solar collector[J]. Solar Energy, 1982, 29(6):487-502.
[14] CHIOU J P. Thermal performance deterioration in crossflow heat exchanger due to the flow nonuniformity [J]. Journal of Heat Transfer, 1978, 100(4):580-587.
[15] CHIOU J P. The effect of longitudinal heat conduction on crossflow heat exchanger[J]. Journal of Heat Transfer, 1978, 100(2):346-351.
[16] SAAD S B, CLEMENT P, FOURMIGUE J F, et al. Single phase pressure drop and two-phase distribution in an offset strip fin compact heat exchanger[J]. Applied Thermal Engineering, 2002, 49(6):99-105.
[17] MULLER-MENZEL T. Plate-fin heat exchanger performance reduction in special two-phase flow conditions[J]. Cryogenics, 1995, 35(5):297-301.
[18] 陶文铨. 数值传热学[M]. 西安:西安交通大学出版社, 2001: 1-6.
[19] 李亚洁.分配联箱气液两相流的实验及数值模拟研究[D].北京:华北电力大学.2009. LI Yajie. Experimental investigation and numerical simulation on gas-liquid two phase flow in distribution header[D]. Beijing: North China Electric Power University, 2009.
[20] ECKHARD K, BRAHMA N, ALEXANDR Z, et al. Experimental and numerical studies of volume fraction distribution in rectangular bubble columns[J]. Nuclear Engineering and Design, 2007, 237(4):399-408.
[1] 王忠啸,崔新壮,崔社强,张磊,车华桥,苏俊伟. 咸水区水泥土桩劣化及改性对道路复合地基的影响[J]. 山东大学学报(工学版), 2018, 48(4): 69-77.
[2] 宋贵杰. 浅埋软岩段隧道进洞施工变形特征与失稳分析[J]. 山东大学学报(工学版), 2018, 48(2): 53-60.
[3] 夏梦然,李卫,冯啸,朱光轩,李夏. 极浅埋富水砂层地铁横通道注浆加固与开挖稳定性[J]. 山东大学学报(工学版), 2017, 47(2): 47-54.
[4] 郑林彬,王建明,何讯超. 2024铝合金喷丸粗糙度试验与数值模拟[J]. 山东大学学报(工学版), 2017, 47(1): 84-89.
[5] 吕国仁,张群,牛奔,高全亭,武照收. 高层建筑桩基施工对邻近建筑物的影响[J]. 山东大学学报(工学版), 2017, 47(1): 48-58.
[6] 彭元诚,董旭,梁娜,邓振全. 北盘江新型空腹式连续刚构桥角隅节点模型试验研究[J]. 山东大学学报(工学版), 2016, 46(6): 113-119.
[7] 米春荣,李建明. 预应力混凝土管桩后注浆器的研制与应用[J]. 山东大学学报(工学版), 2016, 46(4): 89-95.
[8] 周乾,闫维明,纪金豹. 故宫灵沼轩钢结构动力特性与地震响应[J]. 山东大学学报(工学版), 2016, 46(1): 70-79.
[9] 汤潍泽, 欧金秋, 崔新壮, 楼俊杰, 肖溟, 张炯, 黄丹, 侯飞. 车载引起的沥青路面内动水压力现场试验研究[J]. 山东大学学报(工学版), 2015, 45(6): 84-90.
[10] 秦明臣, 董勇, 崔琳, 睢辉, 刘景龙. 双循环湿法烟气脱硫流动传质模拟[J]. 山东大学学报(工学版), 2015, 45(5): 88-94.
[11] 曹伟东, 戴涛, 于金彪, 席开华, 鲁统超, 程爱杰. 化学驱数值模拟的IMPIMC方法[J]. 山东大学学报(工学版), 2015, 45(1): 88-94.
[12] 高智珺, 崔新壮, 隋伟, 郭洪, 刘航, 李长义, 冯洪波. 大型失控车辆与隧道衬砌的动态相互作用与损伤分析[J]. 山东大学学报(工学版), 2014, 44(5): 49-57.
[13] 周前, 赵德刚. 水平旋喷桩在富水砂层浅埋暗挖隧道中的应用[J]. 山东大学学报(工学版), 2014, 44(4): 52-57.
[14] 张涛, 韩吉田, 闫素英, 于泽庭, 周然. 太阳能真空管的热性能分析与测试[J]. 山东大学学报(工学版), 2014, 44(4): 76-83.
[15] 张文俊,李术才,苏茂鑫*,薛翊国,邱道宏. 基于井间电阻率成像的城市地铁溶洞探测方法[J]. 山东大学学报(工学版), 2014, 44(3): 75-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!