山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (6): 57-62.doi: 10.6040/j.issn.1672-3961.0.2017.533
马汉杰1,林霞2,胥晓晖2,张健2,张智晟1*
MA Hanjie1, LIN Xia2, XU Xiaohui2, ZHANG Jian2, ZHANG Zhisheng1*
摘要: 在能源互联网发展的背景下,针对电网需求侧响应的策略及用户节约用电成本的要求,设计智能家居管理系统(smart home management system, SHMS)的基本结构,构建智能家居管理系统负荷优化模型,并采用引入衰减因子的自适应粒子群算法对模型进行求解,可得到满足用户要求的家庭负荷运行方案。仿真算例采用了实际的分时电价、室外温度、负荷参数等信息,与优化前相比,用户负荷曲线得到改善,用电成本及用电量明显下降,验证了算法的有效性。
中图分类号:
[1] 汤奕, 鲁针针, 宁佳,等. 基于电力需求响应的智能家电管理控制方案[J]. 电力系统自动化, 2014, 38(9):93-99. TANG Yi, LU Zhenzhen, NING Jia, et al. Management and control scheme for intelligent home appliances based on electricity demand response[J]. Automation of Electric Power Systems, 2014, 38(9):93-99. [2] 黄焘, 马溪原, 雷金勇,等. 考虑分时电价和需求响应的家庭型用户侧微电网优化运行[J]. 南方电网技术, 2015, 9(4):47-53. HUANG Tao, MA Xiyuan, LEI Jinyong, et al. Optimal operation of household user-side microgrid considering time-of-use price and demand response[J]. Southern Power System Technology, 2015, 9(4):47-53. [3] 盛万兴, 张波, 邸宏宇,等. 一种基于动态抗体记忆库的免疫优化算法在自动需求响应中的应用[J]. 中国电机工程学报, 2014, 34(25):4199-4206. SHENG Wanxing, ZHANG Bo, DI Hongyu, et al. A flexible antibody memory based immune optimization algorithm with application to automatic demand response[J]. Proceedings of the CSEE, 2014, 34(25):4199-4206. [4] SHAO S, PIPATTANASOMPORN M, RAHMAN S. Development of physical-based demand response-enabled residential load models[J]. IEEE Transactions on Power Systems, 2013, 28(2):607-614. [5] POURMOUSAVI S A, PATRICK S N, NEHRIR M H. Real-time demand response through aggregate electric water heaters for load shifting and balancing wind generation[J]. IEEE Transactions on Smart Grid, 2014, 5(2):769-778. [6] GAO H, KWONG S, YANG J, et al. Particle swarm optimization based on intermediate disturbance strategy algorithm and its application in multi-threshold image segmentation[J]. Information Sciences, 2013, 250(11):82-112. [7] ALRASHIDI M R, El-NAGGAR K M. Long term electric load forecasting based on particle swarm optimization[J]. Applied Energy, 2010, 87(1):320-326. [8] CUI X, HARDIN C T, RAGADE R K, et al. Tracking non-stationary optimal solution by particle swarm optimizer[C] //International conference on software engineering, artificial intelligence, Networking and parallel/distributed computing and first acis international workshop on self-assembling wireless networks.[S.l.] : IEEE Computer Society, 2005:133-138. [9] 刘秀梅, 动态系统中粒子群优化算法综述[J]. 软件导刊, 2016, 15(10):43-46. LIU Xiumei, The summarization of particle swarm optimization algorithm in dynamic system[J]. Software Guide, 2016, 15(10):43-46. [10] 何可人, 滕欢, 郭宁. 考虑峰谷差因素的用户侧负荷优化运行[J]. 科学技术与工程, 2016, 16(27):177-182. HE Keren, TENG Huan, GUO Ning. Optimal operation of user side load considering peak-valley difference[J]. Science Technology and Engineering, 2016, 16(27):177-182. |
[1] | 谢国辉,樊昊. 太阳能光热发电技术成熟度预测模型[J]. 山东大学学报(工学版), 2017, 47(6): 83-88. |
[2] | 石访,张恒旭,张磊. 全球能源互联网宏观运行特性仿真框架[J]. 山东大学学报(工学版), 2017, 47(6): 151-156. |
[3] | 刘晓明,许乃媛,杨斌,魏鑫,张丽娜,曹永吉. 全球能源互联网受端特高压网架双阶段优化[J]. 山东大学学报(工学版), 2017, 47(6): 1-6. |
[4] | 张恒旭,韩林晓,石访. 基于最小偏差法的全球能源优化配置方法[J]. 山东大学学报(工学版), 2017, 47(6): 128-133. |
[5] | 李海石, 徐向艺, 张磊. “一带一路”背景下全球能源互联网运行机制构建[J]. 山东大学学报(工学版), 2017, 47(6): 134-142. |
[6] | 张希华,卢姗姗,苏建军. 全球能源互联网关键技术专利发展现状与对策[J]. 山东大学学报(工学版), 2017, 47(6): 143-150. |
[7] | 张恒旭,施啸寒,刘玉田,杨冬. 我国西北地区可再生能源基地对全球能源互联网构建的支撑作用[J]. 山东大学学报(工学版), 2016, 46(4): 96-102. |
[8] | 褚晓东,张荣祥,黄昊怡,唐茂森. 全球能源互联网物理-信息系统协同仿真平台[J]. 山东大学学报(工学版), 2016, 46(4): 103-110. |
[9] | 赵康,王春义,杨冬,刘玉田. 考虑单相短路电流控制的特高压受端电网限流优化[J]. 山东大学学报(工学版), 2016, 46(4): 117-124. |
|