山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (6): 52-56.doi: 10.6040/j.issn.1672-3961.0.2017.376
李笋1,王超2,张桂林3*,徐志根2,程涛2,王义元2,王瑞琪1
LI Sun1, WANG Chao2, ZHANG Guilin3*, XU Zhigen2, CHENG Tao2, WANG Yiyuan2, WANG Ruiqi1
摘要: 对短期负荷特性进行分析,选取与负荷相关的气象因素、日期类型、前几日负荷作为最大(最小)负荷预测回归模型的输入。夏冬两季休息日的负荷特性与春秋两季不一致,根据气象因素修正日期类型对应的数值。采用最小二乘支持向量机(least squares support vector machine, LSSVM)建立气象因素和日期类型与最大(最小)负荷的映射关系。利用相似日法计算日负荷变化系数,在预测最大负荷和最小负荷基础上,计算预测日各点负荷。算例分析验证了本研究预测模型的有效性。
中图分类号:
[1] 雷绍兰, 孙才新, 周湶,等. 一种多变量时间序列的短期负荷预测方法研究[J]. 电工技术学报, 2005, 20(4):62-67. LEI Shaolan, SUN Caixin, ZHOU quan, et al. Method of multivariate time series of short-term load forecasting[J]. Transactions of China Electrotechnical Society, 2005, 20(4):62-67. [2] 唐俊杰, 牛焕娜, 杨明皓. 基于线性相关分析的周期自回归短期负荷预测[J]. 电力系统保护与控制, 2010, 38(14):128-133. TANG Junjie, NIU Huanna, YANG Minghao. Periodic autoregressive short-term forecasting method based on the linear correlation analysis[J]. Power System Protection and Control, 2010, 38(14):128-133. [3] TARSITANO A, AMERISE I L. Short-term load forecasting using a two-stage sarimax model[J]. Energy, 2017, 133:108-114. [4] CHEN Yongbao, XU Peng, CHU Yiyi, et al. Short-term electrical load forecasting using the support vector regression(SVR)model to calculate the demand response baseline for office buildings[J]. Applied Energy, 2017, 195:659-670. [5] CHE Jinxing, WANG Jianzhou. Short-term load forecasting using a kernel-based support vector regression combination model[J]. Applied Energy, 2014, 132(11):602-609. [6] CEPERIC E, CEPERIC V, BARIC A. A strategy for short-term load forecasting by support vector regression machines[J]. IEEE Transactions on Power Systems, 2013, 28(4):4356-4364. [7] RAZA M Q, NADARAJAH M, HUNG D Q, et al. An intelligent hybrid short-term load forecasting model for smart power grids[J]. Sustainable Cities & Society, 2017, 31:264-275. [8] RAZA M Q, KHOSRAVI A. A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings[J]. Renewable & Sustainable Energy Reviews, 2015, 50:1352-1372. [9] 万迪光. 不确定输入对电力负荷预测的影响[J]. 山东大学学报(工学版), 2004, 34(5):55-58. WAN Diguang. Effect of uncertain inputs on electric load forecasting[J]. Journal of Shandong University(Engineering Science), 2004, 34(5):55-58. [10] ZHANG Xiaobo, WANG Jianzhou, ZHANG Kequan. Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm[J]. Electric Power Systems Research, 2017, 146:270-285. [11] 吴倩红, 高军, 侯广松,等. 实现影响因素多源异构融合的短期负荷预测支持向量机算法[J]. 电力系统自动化, 2016, 40(15):67-72. WU Qianhong, GAO Jun, HOU Guangsong, et al. Short-term load forecasting support vector machine algorithm based on multi-source heterogeneous fusion of load factors[J]. Automation of Electric Power Systems, 2016, 40(15):67-72. [12] 王奔, 冷北雪, 张喜海,等. 支持向量机在短期负荷预测中的应用概况[J]. 电力系统及其自动化学报, 2011, 23(4):115-121. WANG Ben, LENG Beixue, ZHANG Xihai, et al. Application profiles of support vector machine in short-term load forecasting[J]. Proceedings of the CSU-EPSA, 2011, 23(4):115-121. [13] 高荣, 刘晓华. 基于小波变换的支持向量机短期负荷预测[J]. 山东大学学报(工学版), 2005, 35(3):115-118. GAO Rong, LIU Xiaohua. Short-term load forecasting method based on support vector machine combined with wavelet transform[J]. Journal of Shandong University(Engineering Science), 2005, 35(3):115-118. [14] 康重庆, 程旭, 夏清,等. 一种规范化的处理相关因素的短期负荷预测新策略[J]. 电力系统自动化, 1999, 23(18):32-35. KANG Chongqing, CHENG Xu, XIA Qing, et al. A new unified approach to short-term load forecasting considering correlated factors[J]. Automation of Electric Power Systems, 1999, 23(18):32-35. |
[1] | 韩学山,王俊雄,孙东磊,李文博,张心怡,韦志清. 计及空间关联冗余的节点负荷预测方法[J]. 山东大学学报(工学版), 2017, 47(6): 7-12. |
[2] | 车长明,张华栋,李建祥,袁弘,刘海波. 需求侧规模化电动汽车的充电负荷优化调控策略[J]. 山东大学学报(工学版), 2017, 47(6): 108-114. |
[3] | 王梅,曾昭虎,孙莺萁,杨二龙,宋考平. 基于输入K-近邻的正则化路径上SVR贝叶斯组合[J]. 山东大学学报(工学版), 2016, 46(6): 8-14. |
[4] | 徐龙琴1,刘双印1,2,3,4*. 基于APSO-WLSSVR的水质预测模型[J]. 山东大学学报(工学版), 2012, 42(5): 80-86. |
[5] | 赵燕燕, 范丽亚. 多输出支持向量回归机在依赖时间的变分不等式中的应用[J]. 山东大学学报(工学版), 2011, 41(3): 23-30. |
[6] | 马庆,李歧强*. 基于电力需求响应的公共建筑基线负荷预测[J]. 山东大学学报(工学版), 2011, 41(2): 114-118. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 240
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1360
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|