您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (6): 52-56.doi: 10.6040/j.issn.1672-3961.0.2017.376

• • 上一篇    下一篇

基于支持向量回归的短期负荷预测

李笋1,王超2,张桂林3*,徐志根2,程涛2,王义元2,王瑞琪1   

  1. 1. 国网山东省电力公司, 山东 济南 250001; 2. 国网山东省电力公司青岛供电公司, 山东 青岛 266002;3. 山东科技大学电气与自动化工程学院, 山东 青岛 266590
  • 收稿日期:2017-08-03 出版日期:2017-12-20 发布日期:2017-08-03
  • 通讯作者: 张桂林(1983— ),男,山东寿光人,讲师,博士,主要研究方向为电力系统智能控制. E-mail: zhangguilin@sdust.edu.cn E-mail:lisun@163.com
  • 作者简介:李笋(1985— ),男,山东肥城人,高级工程师,工学硕士,主要研究方向为电力系统分析运行和电力系统智能技术. E-mail:lisun@163.com
  • 基金资助:
    国家自然科学基金资助项目(61503216;61603320);山东省自然科学基金资助项目(ZR2017BEE058)

Short-term power load forecasting based on support vector regression

LI Sun1, WANG Chao2, ZHANG Guilin3*, XU Zhigen2, CHENG Tao2, WANG Yiyuan2, WANG Ruiqi1   

  1. 1. State Grid Shandong Electric Power Company, Jinan 250001, Shandong, China;
    2. Qingdao Power Supply Company, State Grid Shandong Electric Power Company, Qingdao 266002, Shandong, China;
    3. School of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
  • Received:2017-08-03 Online:2017-12-20 Published:2017-08-03

摘要: 对短期负荷特性进行分析,选取与负荷相关的气象因素、日期类型、前几日负荷作为最大(最小)负荷预测回归模型的输入。夏冬两季休息日的负荷特性与春秋两季不一致,根据气象因素修正日期类型对应的数值。采用最小二乘支持向量机(least squares support vector machine, LSSVM)建立气象因素和日期类型与最大(最小)负荷的映射关系。利用相似日法计算日负荷变化系数,在预测最大负荷和最小负荷基础上,计算预测日各点负荷。算例分析验证了本研究预测模型的有效性。

关键词: 支持向量回归, 最大负荷, 相似日, 负荷预测

Abstract: The characters of short term load were studied and the influence factors of daily load in summer and winter was analysed. The meteorological factors, such as date type and pevious load, were selected as the input of maximum incremental load forecasting regression model. The value corresponding to date type was modified based on meteorological factor due to the inconsistent load characteristic in different seasons. The least squares support vector machine(LS-SVM)was utilized to model mapping relationship between input factors and maximum incremental load. Numerical tests demonstrated the efficiency of the proposed method.

Key words: similar days, support vector regression(SVR), load forecasting, peak load

中图分类号: 

  • TM715
[1] 雷绍兰, 孙才新, 周湶,等. 一种多变量时间序列的短期负荷预测方法研究[J]. 电工技术学报, 2005, 20(4):62-67. LEI Shaolan, SUN Caixin, ZHOU quan, et al. Method of multivariate time series of short-term load forecasting[J]. Transactions of China Electrotechnical Society, 2005, 20(4):62-67.
[2] 唐俊杰, 牛焕娜, 杨明皓. 基于线性相关分析的周期自回归短期负荷预测[J]. 电力系统保护与控制, 2010, 38(14):128-133. TANG Junjie, NIU Huanna, YANG Minghao. Periodic autoregressive short-term forecasting method based on the linear correlation analysis[J]. Power System Protection and Control, 2010, 38(14):128-133.
[3] TARSITANO A, AMERISE I L. Short-term load forecasting using a two-stage sarimax model[J]. Energy, 2017, 133:108-114.
[4] CHEN Yongbao, XU Peng, CHU Yiyi, et al. Short-term electrical load forecasting using the support vector regression(SVR)model to calculate the demand response baseline for office buildings[J]. Applied Energy, 2017, 195:659-670.
[5] CHE Jinxing, WANG Jianzhou. Short-term load forecasting using a kernel-based support vector regression combination model[J]. Applied Energy, 2014, 132(11):602-609.
[6] CEPERIC E, CEPERIC V, BARIC A. A strategy for short-term load forecasting by support vector regression machines[J]. IEEE Transactions on Power Systems, 2013, 28(4):4356-4364.
[7] RAZA M Q, NADARAJAH M, HUNG D Q, et al. An intelligent hybrid short-term load forecasting model for smart power grids[J]. Sustainable Cities & Society, 2017, 31:264-275.
[8] RAZA M Q, KHOSRAVI A. A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings[J]. Renewable & Sustainable Energy Reviews, 2015, 50:1352-1372.
[9] 万迪光. 不确定输入对电力负荷预测的影响[J]. 山东大学学报(工学版), 2004, 34(5):55-58. WAN Diguang. Effect of uncertain inputs on electric load forecasting[J]. Journal of Shandong University(Engineering Science), 2004, 34(5):55-58.
[10] ZHANG Xiaobo, WANG Jianzhou, ZHANG Kequan. Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm[J]. Electric Power Systems Research, 2017, 146:270-285.
[11] 吴倩红, 高军, 侯广松,等. 实现影响因素多源异构融合的短期负荷预测支持向量机算法[J]. 电力系统自动化, 2016, 40(15):67-72. WU Qianhong, GAO Jun, HOU Guangsong, et al. Short-term load forecasting support vector machine algorithm based on multi-source heterogeneous fusion of load factors[J]. Automation of Electric Power Systems, 2016, 40(15):67-72.
[12] 王奔, 冷北雪, 张喜海,等. 支持向量机在短期负荷预测中的应用概况[J]. 电力系统及其自动化学报, 2011, 23(4):115-121. WANG Ben, LENG Beixue, ZHANG Xihai, et al. Application profiles of support vector machine in short-term load forecasting[J]. Proceedings of the CSU-EPSA, 2011, 23(4):115-121.
[13] 高荣, 刘晓华. 基于小波变换的支持向量机短期负荷预测[J]. 山东大学学报(工学版), 2005, 35(3):115-118. GAO Rong, LIU Xiaohua. Short-term load forecasting method based on support vector machine combined with wavelet transform[J]. Journal of Shandong University(Engineering Science), 2005, 35(3):115-118.
[14] 康重庆, 程旭, 夏清,等. 一种规范化的处理相关因素的短期负荷预测新策略[J]. 电力系统自动化, 1999, 23(18):32-35. KANG Chongqing, CHENG Xu, XIA Qing, et al. A new unified approach to short-term load forecasting considering correlated factors[J]. Automation of Electric Power Systems, 1999, 23(18):32-35.
[1] 韩学山,王俊雄,孙东磊,李文博,张心怡,韦志清. 计及空间关联冗余的节点负荷预测方法[J]. 山东大学学报(工学版), 2017, 47(6): 7-12.
[2] 车长明,张华栋,李建祥,袁弘,刘海波. 需求侧规模化电动汽车的充电负荷优化调控策略[J]. 山东大学学报(工学版), 2017, 47(6): 108-114.
[3] 王梅,曾昭虎,孙莺萁,杨二龙,宋考平. 基于输入K-近邻的正则化路径上SVR贝叶斯组合[J]. 山东大学学报(工学版), 2016, 46(6): 8-14.
[4] 徐龙琴1,刘双印1,2,3,4*. 基于APSO-WLSSVR的水质预测模型[J]. 山东大学学报(工学版), 2012, 42(5): 80-86.
[5] 赵燕燕, 范丽亚. 多输出支持向量回归机在依赖时间的变分不等式中的应用[J]. 山东大学学报(工学版), 2011, 41(3): 23-30.
[6] 马庆,李歧强*. 基于电力需求响应的公共建筑基线负荷预测[J]. 山东大学学报(工学版), 2011, 41(2): 114-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!