您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (6): 63-69.doi: 10.6040/j.issn.1672-3961.0.2017.570

• • 上一篇    下一篇

分体冷却变压器的有限元二维热学模型仿真与分析

魏本刚1,郭若琛2,黄华1,王祯2,刘鹏程2,张钰莹2,李可军2,娄杰2*   

  1. 1. 国网上海市电力公司电力科学研究院, 上海 200437;2. 山东大学电气工程学院, 山东 济南 250061
  • 收稿日期:2017-10-07 出版日期:2017-12-20 发布日期:2017-10-07
  • 通讯作者: 娄杰(1975— ),男,山东潍坊人,副教授,博士,主要研究方向为新型高压电器. E-mail:loujie00@sdu.edu.cn E-mail:wbgsj@126.com
  • 作者简介:魏本刚(1981— ),男,山东日照人,高级工程师,博士,主要研究方向为变压器状态诊断. E-mail: wbgsj@126.com
  • 基金资助:
    国家电网公司科技资助项目(SGTYHT/15-JS-191)

Simulation and analysis of two dimensional temperature field of the discrete cooling system transformer based on the finite element method

WEI Bengang1, GUO Ruochen2, HUANG Hua1, WANG Zhen2, LIU Pengcheng2, ZHANG Yuying2, LI Kejun2, LOU Jie2*   

  1. 1. Electric Power Research Institute, State Grid Shanghai Municipal Electric Power Company, Shanghai 200437, China;
    2. School of Electrical Engineering, Shandong University, Jinan 250061, Shandong, China
  • Received:2017-10-07 Online:2017-12-20 Published:2017-10-07

摘要: 在大城市中,建立地下变电站多采用分体冷却变压器,然而目前针对分体冷却变压器的散热问题研究很少。采用有限元法对分体变压器温度场进行仿真计算。利用FLUENT软件建立了简化的分体冷却变压器二维模型,基于二维模型仿真计算得到的变压器温度场数据,并与试验测量数据进行对比,验证了二维模型仿真计算的有效性。分析了变压器上下油管壁厚和环境温度对温度的影响,为结构优化提供参考。

关键词: 变压器, 温度场, 二维模型, 有限元, 分体冷却

Abstract: Discrete cooling transformers were mainly applied when building underground substations in urban cities, but there was little research about the heat radiation of discrete cooling transformers. The finite element method was used to simulate the temperature field of discrete transformer, and 2D model was established in FLUENT.The temperature field data from simulation were compared with filed measured ones to testify the validity of the 2D model. The influence of environment temperature and pipe wall thickness was analyzed to provide references to optimum structure.

Key words: two dimensional model, the finite element method, discrete cooling, transformer, temperature field

中图分类号: 

  • TM41
[1] HEATHCOTE M J. 变压器实用技术大全[M].北京:机械工业出版社,2008.
[2] 曾令全,李书权.变压器[M].北京:机械工业出版社,2010.
[3] 谢文景.变压器绝缘老化分析及其寿命管理[J].广东电力,2001,14(4):15-17. XIE Wenjing. Insulation aging analysis and service life management for transformers[J]. Guangdong Electric Power, 2001, 14(4):15-17.
[4] SKILLEN A, REVELL A, LACOVIDES H, et al. Numerical prediction of local hot-spot phenomena in transformer windings[J]. Applied Thermal Engineering, 2012, 36(2):96-105.
[5] 王留萍.大城市地下变电站设计中的若干问题研究[D]. 上海:上海交通大学,2011. WANG Liuping. Researching on some problems of underground substation designing in great city[D].Shanghai:Shanghai Jiao Tong University, 2011.
[6] 江淘莎,李剑,陈伟根,等. 油浸式变压器绕组热点温度计算的热路模型[J]. 高电压技术,2009,35(7):1635-1640. JIANG Taosha, LI Jian, CHEN Weigen, et al. Thermal model for hot spot temperature calculation in oil-immersed transformers[J]. High Voltage Engineering, 2009, 35(7):1635-1640.
[7] 刘刚,靳艳娇,马永强,等. 油浸式变压器流体场和温度场的数值分析[J]. 变压器,2017,54(5):22-26. LIU Gang, JIN Yanjiao, MA Yongqiang, et al. Numerical analysis of fluid field and temperature field of oil-immersed transformer[J]. Transformer, 2017, 54(5):22-26.
[8] 杨启平,薛五德,蓝之达.变压器绝缘老化的诊断与寿命评估[J].变压器,2004,41(2):13-17. YANG Qiping, XUE Wude, LAN Zhida. Aging diagnosis and expected life assessment for transformer insulation[J]. Transformer, 2004, 41(2):13-17.
[9] 井永腾,李岩,孙昕,等.基于 Fluent 油流模型的油浸式变压器绕组温升计算[J].变压器,2009,47(4):6-10. JING Yongteng, LI Yan, SUN Xin, et al. Calculation of winding temperature rise in oil-immersed transformer based on fulent oil flow model[J].Transformer, 2009, 47(4):6-10.
[10] SWIFT G, MOLINSKI T S, LEHN W. A fundamental approach to transformer thermal modeling. I. Theory and equivalent circuit[J]. IEEE Transactions on Power Delivery, 2001, 16(2):171-175.
[11] SUSA D, LEHTONEN M, NORDMAN H. Dynamic thermal modelling of power transformers[J]. IEEE Transactions on Power Delivery, 2004, 20(1):197-204.
[12] SUSA D, LEHTONEN M. Dynamic thermal modeling of power transformers: further development-part II[J]. IEEE Transactions on Power Delivery, 2006, 21(4):1961-1970.
[13] 崔昊杨,唐忠,朱捷,等.电力变压器铁心温度场分布的数值模拟及分析[J].上海电力学院学报,2010,26(5):425-428. CUI Haoyang, TANG Zhong, ZHU Jie, et al. Numerical calculation and analysis of temperature field distribution of core in dry type power transformer[J]. Journal of Shanghai University of Electric Power, 2010, 26(5):425-428.
[14] 杜莉.油浸式变压器的热模拟及结构优化[D].天津:河北工业大学, 2010. DU Li. Thermal simulation and structure optimization of oil-immersed transformer[D]. Tianjin:Hebei University of Technology, 2010.
[15] 刘永志,李岩,井永腾,等.基于Fluent软件的电力变压器温度场计算与分析[J].高压电器,2012,48(10):6-11. LIU Yongzhi, LI Yan, JING Yongteng, et al. Calculation and analysis of temperature field of power transformer based on software fluent[J]. High Voltage Apparatus, 2012, 48(10):6-11.
[16] 傅晨钊,汲胜昌,王世山,等.变压器绕组温度场的二维数值计算[J]. 高电压技术,2002,28(5):10-12. FU Chenzhao, JI Shengchang, WANG Shishan, et al. 2D numerical calculation of temperature field of winding in transformer[J]. High Voltage Engineering, 2002, 28(5):10-12.
[17] 陈伟根,奚红娟,苏小平,等. 广义回归神经网络在变压器绕组热点温度预测中的应用[J]. 高电压技术,2012,38(1):16-21. CHEN Weigen, XI Hongjuan, SU Xiaoping, et al. Application of generalized regression neural network to transformer winding hot spot temperature forecasting[J]. High Voltage Engineering, 2012, 38(1):16-21.
[18] 滕黎. 油浸式变压器热路计算及热点温度遗传支持向量机预测研究[D]. 重庆:重庆大学,2012. TENG Li. Studies on thermal circuit calculation and genetic support vector machine prediction for hot-spot temperature of oil-immersed transformer[D]. Chongqing: Chongqing University, 2012.
[19] 邓建钢,王立新,聂德鑫,等. 内置光纤光栅油浸式变压器的研制[J]. 中国电机工程学报,2013,33(24):160-167. DENG Jiangang, WANG Lixin, NIE Dexin, et al. Development of oil-immersed transformers with built-in fiber bragg grating sensors[J]. Proceedings of the CSEE, 2013, 33(24):160-167.
[20] 方海彬,刘晓明,赖增辉,等. 油浸式变压器绕组油流及温升影响因素分析[J]. 变压器,2013,50(1):18-22. FANG Haibin, LIU Xiaoming, LAN Zenghui, et al. Analysis of influence on oil flow and temperature rise of winding in oil-immersed transformer[J]. Transformer, 2013, 50(1):18-22.
[1] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81-85.
[2] 宁光忠,胡泉光,闫肖,王鲁瑀. N-J水电站岩爆区应力释放孔预裂控制的爆破分析[J]. 山东大学学报(工学版), 2017, 47(2): 41-46.
[3] 吕国仁,张群,牛奔,高全亭,武照收. 高层建筑桩基施工对邻近建筑物的影响[J]. 山东大学学报(工学版), 2017, 47(1): 48-58.
[4] 苏成功,刘燕,王威强, 王玉花. 压痕对不锈钢材料表面残余应力的影响[J]. 山东大学学报(工学版), 2017, 47(1): 90-96.
[5] 祁金胜,安春国,柏洁, 王湛. 圆形烟风道支座与加固肋匹配特性[J]. 山东大学学报(工学版), 2017, 47(1): 125-130.
[6] 张万志,刘华,张峰,高磊,姚晨,刘冠之. 斜拉桥塔梁同步施工过程的力学特性[J]. 山东大学学报(工学版), 2016, 46(6): 120-126.
[7] 纪跃波,伍旺贤. 一种减小行波型旋转超声电动机径向滑移的方法[J]. 山东大学学报(工学版), 2016, 46(3): 112-116.
[8] 雷正保,廖卓,刘助春. 交叉缠绕式柔性护栏端部锚固优化设计[J]. 山东大学学报(工学版), 2016, 46(3): 93-98.
[9] 匡健1,王明斌2,3,张波4,张敦福4*. 地铁列车引起的振动对城市敏感建筑结构的影响[J]. 山东大学学报(工学版), 2013, 43(6): 72-76.
[10] 王建明,裴信超,樊现行,刘伟,曹雁超. SPH耦合FEM模拟弹丸撞击对表面形貌的影响[J]. 山东大学学报(工学版), 2013, 43(5): 87-92.
[11] 王建明,樊现行,裴信超,曹雁超. 光滑节点域有限元法[J]. 山东大学学报(工学版), 2013, 43(2): 54-61.
[12] 姜波1,田茂诚2*,郝卫东1, 刘福国1. 新型弹性管束固有振动特性实验及数值模拟[J]. 山东大学学报(工学版), 2012, 42(4): 132-136.
[13] 王建明1,张刚1*,戚放2,樊现行1,余丰1. 基于光滑有限元法的体积锁定研究[J]. 山东大学学报(工学版), 2012, 42(3): 93-99.
[14] 朱登元1,2,管延华1*. 毛细水作用对粉土路基稳定性的影响[J]. 山东大学学报(工学版), 2012, 42(1): 93-98.
[15] 卞鹏1, 王媛2,王笃强2. 有障碍物地基瑞利波频散曲线的特征研究[J]. 山东大学学报(工学版), 2012, 42(1): 99-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!