您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (3): 1-8.doi: 10.6040/j.issn.1672-3961.0.2016.320

• •    下一篇

时滞复杂动态网络的有限时间随机广义外部同步

李望1,2,马志才2,侍红军2   

  1. 1. 江苏徐州医药高等职业学校基础部, 江苏 徐州 221116;2. 中国矿业大学数学学院, 江苏 徐州 221116
  • 收稿日期:2016-08-04 出版日期:2017-06-20 发布日期:2016-08-04
  • 作者简介:李望(1979— ),女,江苏徐州人,讲师,工学硕士,主要研究方向为复杂系统仿真.E-mail:liwang718@126.com
  • 基金资助:
    国家自然科学基金资助项目(61403393);中央高校基本科研业务费资助项目(2015XKMS076)

Finite-time stochastic generalized outer synchronization of time-delayed complex dynamical networks

LI Wang1,2, MA Zhicai2, SHI Hongjun2   

  1. 1. Basic Department, Jiangsu Xuzhou Medical College, Xuzhou 221008, Jiangsu, China;
    2. School of Mathematics, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China
  • Received:2016-08-04 Online:2017-06-20 Published:2016-08-04

摘要: 基于有限时间控制技术以及开环控制技术,研究具有噪声干扰的时滞复杂动态网络的有限时间广义外部同步问题。设计新的有限时间控制器,利用随机微分方程的稳定性理论得到网络实现有限时间随机广义外部同步的充分条件。研究表明:设计的控制器对于噪声干扰具有较强的鲁棒性,且网络同步时间与控制强度密切相关。在其他条件不变的情况下,网络同步时间随着控制强度的增大而减小。数值模拟中分别选择R(¨overo)ssler-like系统和Hindmarsh-Rose系统作为驱动网络与响应网络的节点动力学,给出了网络同步误差和总同步误差的演化轨迹。数值模拟结果验证了理论结果的有效性与可行性。

关键词: 噪声, 同步, 复杂网络, 时滞

Abstract: Based on the finite-time control technology and the open-loop control method, the generalized outer synchronization between two complex dynamical networks with time delay and noise perturbation was investigated. A new finite-time controller was designed and the sufficient condition for the finite-time stochastic generalized outer synchronization was obtained based on the finite-time stability theory of stochastic differential equations. The results showed that the synchronization scheme was robust to the noise perturbation. The theoretical results showed that the synchronization time depended on the control strength. Under the same conditions, the synchronization time decreased with the increasing of the control strength. In the numerical examples, the R(¨overo)ssler-like system and Hindmarsh-Rose system were chosen as the node dynamics of the drive and response networks, respectively. The time evolution trajectories of synchronization error and total synchronization error were given. The effectiveness and feasibility of the theoretical result was confirmed by the numerical results.

Key words: complex networks, noise, synchronization, time delay

中图分类号: 

  • TP13
[1] WATTS D J, STROGATZ S H. Collective dynamics of small-world networks[J]. Nature, 1998, 393(6684): 440-442.
[2] ARENAS A, DAZ-GUILERA A, KURTHS J, et al. Synchronization in complex networks[J]. Physics Reports, 2008, 469(3): 93-153.
[3] 孙美美, 胡云安, 韦建明. 多涡卷超混沌系统自适应滑模同步控制[J]. 山东大学学报(工学版), 2015, 45(6): 45-51. SUN Meimei, HU Yunan, WEI Jianming. Synchronization of multiwing hyperchaotic systems via adaptive sliding mode control[J]. Journal of Shandong University(Engineering Science), 2015, 45(6): 45-51.
[4] LI Changpin, SUN Weigang, KURTHS J. Synchronization between two coupled complex networks[J]. Physical Review E, 2007, 76(4):046204
[5] WU Xiaoqun, ZHENG Weixing, ZHOU Jin. Generalized outer synchronization between complex dynamical networks[J]. Chaos, 2009, 19(1): 013109.
[6] SUN Weigang, LI Shixing. Generalized outer synchronization between two uncertain dynamical networks[J]. Nonlinear Dynamics, 2014, 77(3): 481-489.
[7] WANG Guanjun,CAO Jinde,LU Jianquan. Outer synchronization between two identifical networks with circumstance noice[J]. Physica A, 2010, 389(7): 1480-1488.
[8] SUN Yongzheng, LI Wang, RUAN Jiong. Generalized outer synchronization between complex dynamic networks with time delay and noise perturbation[J]. Communications in Nonlinear Science & Numerical Simulation, 2013, 18(4): 989-998.
[9] 马奎森, 王林山. S-分布时滞随机BAM神经网络的指数同步[J]. 山东大学学报(理学版), 2014, 49(3): 73-78. MA Kuisen, WANG Linshan. Exponential synchronization of stochastic BAM neural networks with S-type distributed delays[J]. Journal of Shandong University(Natural Science), 2014, 49(3): 73-78.
[10] 赵永清,江明辉. 混合变时滞二重边复杂网络自适应同步反馈控制[J]. 山东大学学报(工学版),2010, 40(3): 61-68. ZHAO Yongqing, JIANG Minghui. Adaptive synchronous feedback control of mixed time-varying delayed and double-linked complex networks[J]. Journal of Shandong University(Engineering Science), 2010, 40(3):61-68.
[11] 周璇, 谭满春, 田文秀. 双重时滞和非时滞耦合的复杂网络同步研究[J]. 计算机工程与应用, 2015, 51(10):30-35. ZHOU Xuan, TAN Manchun, TIAN Wenxiu. Research on synchronization of complex network with double delayed and double non-delayed coupling[J]. Computer Engineering and Applications, 2015, 51(10):30-35.
[12] HAUSCHILDT B, JASON N B, BALANOV A, et al. Noise-induced cooperative dynamics and its control in coupled neuron models[J]. Physical Review E, 2006, 74(5): 051906.
[13] KORNISS G. Synchronization in weighted uncorrelated complex networks in a noisy environment: optimization and connections with transport efficiency[J]. Physical Review E, 2007, 75(75): 051121.
[14] LIN Wei, CHEN Guanrong. Using white noise to enhance synchronization of coupled chaotic systems[J]. Chaos, 2006, 16(1): 013134.
[15] SUN Yongzheng, SHI Hongjun, BAKARE E A, et al. Noise-induced outer synchronization between two different complex dynamical networks[J]. Nonlinear Dynamics, 2014, 76(1): 519-528.
[16] 李望,石咏,马继伟. 复杂动力学网络的有限时间外部同步[J].山东大学学报(工学版),2013,43(2):48-53. LI Wang, SHI Yong, MA Jiwei. Finite-time outer synchronization of complex dynamical networks[J]. Journal of Shandong University(Engineering Science), 2013, 43(2):48-53.
[17] SANJAY P B, DENNIS S B. Finite-time stability of continuous autonomous systems[J]. SIAM Journal on Applied Mathematics, 2000, 38(3):751-766.
[18] HUANG Junjian, LI Chuandong, HUANG Tingwen, et al. Finite-time lag synchronization of delayed neural networks[J]. Neurocomputing, 2014, 139(13):145-149.
[19] WANG Hua, HAN Zhengzhi, XIE Qiyue, et al. Finite-time chaos control via nonsingular terminal sliding mode control[J]. Communications in Nonlinear Science & Numerical Simulation, 2009, 14(6):2728-2733.
[20] YANG Xinsong, CAO Jinde. Finite-time stochastic synchronization of complex networks[J]. Applied Mathematical Modelling, 2010, 34(11): 3631-3641.
[21] HARDY G, LITTLEWOOD J, POLYA G. Inequalities[M]. Cambridge:Cambridge University Press, 1952.
[22] ØKSENDAL B. Stochastic differential equations[M]. New York: Springer-Verlag Heidelberg, 2000.
[1] 王东晓. 具有纠缠项的分数阶五维混沌系统滑模同步的两种方法[J]. 山东大学学报(工学版), 2018, 48(5): 85-90.
[2] 王春彦,邸金红. 基于降阶方法的分数阶多涡卷混沌系统的同步控制[J]. 山东大学学报(工学版), 2018, 48(5): 91-94.
[3] 孟晓玲,王建军. 一类分数阶冠状动脉系统的混沌同步控制[J]. 山东大学学报(工学版), 2018, 48(4): 55-60.
[4] 毛北行. 纠缠混沌系统的比例积分滑模同步[J]. 山东大学学报(工学版), 2018, 48(4): 50-54.
[5] 冯霞,黄熙祥. 基于GEL的机场噪声等值线并行生成算法[J]. 山东大学学报(工学版), 2018, 48(2): 8-13.
[6] 宋正强,杨辉玲,肖丹. 基于在线粒子群优化方法的IPMSM驱动电流和速度控制器[J]. 山东大学学报(工学版), 2018, 48(1): 112-116.
[7] 李炜,王可宏,曹慧超. 基于新型ESF的一类非线性系统故障滤波方法[J]. 山东大学学报(工学版), 2017, 47(5): 7-14.
[8] 毛海杰,李炜,王可宏,冯小林. 基于自抗扰的多电机转速同步系统传感器故障切换容错策略[J]. 山东大学学报(工学版), 2017, 47(5): 64-70.
[9] 黄成凯,杨浩,姜斌,程舒瑶. 一类复杂网络的协同容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 203-209.
[10] 赵晔,何潇,周东华. 带有不准确测量噪声的最小二乘故障估计[J]. 山东大学学报(工学版), 2017, 47(5): 254-262.
[11] 毛北行,程春蕊. 分数阶Victor-Carmen混沌系统的自适应滑模控制[J]. 山东大学学报(工学版), 2017, 47(4): 31-36.
[12] 张玉婷,李望,王晨光,刘友权,侍红军. 不连续耦合的时滞复杂动态网络的同步[J]. 山东大学学报(工学版), 2017, 47(4): 43-49.
[13] 侯广松,高军,吴衍达,张欣,邓影,李常刚,张亚萍. 输电线路参数与运行方式的相关性分析[J]. 山东大学学报(工学版), 2017, 47(4): 89-95.
[14] 郝崇清,王志宏. 基于复杂网络的癫痫脑电分类与分析[J]. 山东大学学报(工学版), 2017, 47(3): 8-15.
[15] 李庆宾,王晓东. 分数阶情绪模型的终端滑模控制混沌同步[J]. 山东大学学报(工学版), 2017, 47(3): 84-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!