山东大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (4): 18-25.
安春霖1,陆慧娟1,2*,郑恩辉3,王明怡1,陆羿4
AN Chun-lin1, LU Hui-juan1,2*, ZHENG En-hui3, WANG Ming-yi1, LU Yi4
摘要:
为了实现代价敏感分类过程中的最小平均误分类代价的目的,本研究通过在分类过程中引入概率估计以及误分类代价重新构造分类结果,提出了基于极限学习机(extreme learning machine, ELM)的代价敏感算法CSELM并在上述算法基础上,引入“拒识代价”,进一步减小了平均误分类代价。算法被运用到基因表达数据集上并与极限学习机、代价敏感决策树、代价敏感BP神经网络和代价敏感支持向量机做对比,可以得出,嵌入拒识的CSELM算法能够更好地降低误分类代价,使分类结果更加可靠。
中图分类号:
[1] | 叶明全,高凌云,万春圆. 基于人工蜂群和SVM的基因表达数据分类[J]. 山东大学学报(工学版), 2018, 48(3): 10-16. |
[2] | 于青民,李晓磊,翟勇. 基于改进EMD和数据分箱的轴承内圈故障特征提取方法[J]. 山东大学学报(工学版), 2017, 47(3): 89-95. |
[3] | 何其佳,刘振丙,徐涛,蒋淑洁. 基于LBP和极限学习机的脑部MR图像分类[J]. 山东大学学报(工学版), 2017, 47(2): 86-93. |
[4] | 翟俊海,张素芳,胡文祥,王熙照. 核心集径向基函数极限学习机[J]. 山东大学学报(工学版), 2016, 46(2): 1-5. |
[5] | 熊冰妍, 王国胤, 邓维斌. 分级式代价敏感决策树及其在手机换机预测中的应用[J]. 山东大学学报(工学版), 2015, 45(5): 36-42. |
[6] | 张伶卫,万文强. 基于云计算平台的代价敏感集成学习算法研究[J]. 山东大学学报(工学版), 2012, 42(4): 19-23. |
[7] | 尹建川1,2, 邹早建1,3, 徐锋1. 一种基于Akaike信息准则的极限学习机[J]. 山东大学学报(工学版), 2011, 41(6): 7-11. |
|