您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (4): 13-17.

• 机器学习与数据挖掘 • 上一篇    下一篇

基于稀疏表示和PCNN的多模态图像融合

林哲1,闫敬文2,袁野2   

  1. 1. 汕头职业技术学院计算机系, 广东 汕头 515078;  2. 汕头大学工学院电子工程系, 广东 汕头 515063
  • 收稿日期:2013-04-10 出版日期:2013-08-20 发布日期:2013-04-10
  • 作者简介:林哲(1981- ),男,广东汕头人,讲师,硕士,主要研究方向为计算机视觉,模式识别等.E-mail:gd1392@126.com
  • 基金资助:

    国家自然科学基金资助项目(40971206);汕头职业技术学院科研课题资助项目(SZK2012B01)

Multi-modality image fusion based on sparse representation and PCNN

LIN Zhe1, YAN Jing-wen2, YUAN Ye2   

  1. 1. Department of Computer, Shantou Polytechnic, Shantou 515078, China;
     2. Department of Electronics Engineering, Engineering College, Shantou University, Shantou 515063, China
  • Received:2013-04-10 Online:2013-08-20 Published:2013-04-10

摘要:

提出一种基于稀疏表示和脉冲耦合神经网络(pulse coupled neural network, PCNN)的新方法。首先将原图像进行bandelet变换,提取出图像中的几何流和bandelet系数等重要信息,再利用PCNN进行几何流融合、根据稀疏相似度优化融合后的几何流,然后更新部分bandelet系数并根据最大绝对值规则进行融合,最后通过bandelet逆变换得到融合后的图像。仿真实验结果表明,本算法有效改善了融合效果,融合图像边缘、纹理清晰,整体效果极佳;与现有的平均值融合算法、拉普拉斯金字塔算法以及基于小波变换和PCNN的WT-PCNN算法相比,本算法得到的融合图像的灰度均值、标准差、平均梯度、互信息等指标都得到了提高。

关键词: bandelet变换, 几何流, 脉冲耦合神经网络, 图像融合, 信号稀疏表示

Abstract:

A novel algorithm for image fusion was proposed based on sparse representation and PCNN (pulse coupled neural network). The bandelet transform was used to extract important information such as geometric flows and bandelet coefficients of the source image.Then geometric flows were fused by PCNN and optimized according to similarity of sparseness. Then, the  bandelet coefficients were updated and fused according to a rule of maximum absolute. Finally, the  inverse bandelet transform was applied for the fused image. The experimental results  showed that this algorithm could  effectively improve the fusion effect. The fusion image had clear edges, texture and excellent overall effect. Compared with the average algorithm, the Laplace pyramid algorithm and the WT-PCNN algorithm  based on wavelet transform and PCNN,  a proposed algorithm achieved the better average gray, standard deviation, average gradient and mutual information.

Key words: sparse representation for signal, geometry flow, pulse coupled neural network, image fusion, bandelet transform

中图分类号: 

  • TP391.41
[1] 陈海永,余力,刘辉,杨佳博,胡启迪. 基于经验小波的太阳能电池缺陷图像融合[J]. 山东大学学报(工学版), 2018, 48(5): 24-31.
[2] 刘帆,陈泽华,柴晶. 一种基于深度神经网络模型的多聚焦图像融合方法[J]. 山东大学学报(工学版), 2016, 46(3): 7-13.
[3] 杨秀林1,黄硕2*,邓苗1,张基宏1,3. 基于显著计算与自适应PCNN的图像融合方法[J]. 山东大学学报(工学版), 2014, 44(2): 35-42.
[4] 吴国瑶,马立勇. 基于B样条FFD模型配准的虹膜图像融合方法[J]. 山东大学学报(工学版), 2010, 40(5): 24-27.
[5] 陈爽,姜威 . 基于DT-DWT的医学图像融合算法[J]. 山东大学学报(工学版), 2008, 38(1): 32-35 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!