山东大学学报(工学版) ›› 2012, Vol. 42 ›› Issue (2): 108-111.
孙鹏,程世庆*,谢敬思,张海瑞
SUN Peng, CHENG Shi-qing*, XIE Jing-si, ZHANG Hai-rui
摘要:
为了更加快速、精确地对混合生物质灰熔点进行预测,利用交叉验证(cross validation,CV)方法进一步优化了前人提出的经遗传算法(genetic algorithm,GA)优化的支持向量机(support vector machine,SVM)回归模型。以灰成分作为输入量,灰熔点为输出量,以单生物质数据训练该模型,对混合生物质灰熔点进行了预测;并与仅经GA优化模型的预测结果进行了比较。研究结果表明:经GA与CV优化的SVM模型对混合生物质灰熔点进行预测,平均绝对误差为25。0℃,平均相对误差为2。7%,比仅经GA优化的SVM模型预测结果更为精确;适当地设置相关参数可以节省程序运行时间。
[1] | 叶明全,高凌云,万春圆. 基于人工蜂群和SVM的基因表达数据分类[J]. 山东大学学报(工学版), 2018, 48(3): 10-16. |
[2] | 陈嘉杰,王金凤. 基于蚁群算法求解Choquet模糊积分模型[J]. 山东大学学报(工学版), 2018, 48(3): 81-87. |
[3] | 刘哲,宋锐,邹涛. 基于模型预测控制的磨削机器人末端力跟踪控制算法[J]. 山东大学学报(工学版), 2018, 48(1): 42-49. |
[4] | 谢国辉,樊昊. 太阳能光热发电技术成熟度预测模型[J]. 山东大学学报(工学版), 2017, 47(6): 83-88. |
[5] | 韩学山,王俊雄,孙东磊,李文博,张心怡,韦志清. 计及空间关联冗余的节点负荷预测方法[J]. 山东大学学报(工学版), 2017, 47(6): 7-12. |
[6] | 李笋,王超,张桂林,徐志根,程涛,王义元,王瑞琪. 基于支持向量回归的短期负荷预测[J]. 山东大学学报(工学版), 2017, 47(6): 52-56. |
[7] | 车长明,张华栋,李建祥,袁弘,刘海波. 需求侧规模化电动汽车的充电负荷优化调控策略[J]. 山东大学学报(工学版), 2017, 47(6): 108-114. |
[8] | 王飞,徐健,李伟,汪新浩,施啸寒. 基于分布式储能系统的风储滚动优化调度方法[J]. 山东大学学报(工学版), 2017, 47(6): 89-94. |
[9] | 周志杰,赵福均,胡昌华,王力,冯志超,刘涛源. 基于证据推理的航天继电器故障预测方法[J]. 山东大学学报(工学版), 2017, 47(5): 22-29. |
[10] | 周福娜,高育林,王佳瑜,文成林. 基于深度学习的缓变故障早期诊断及寿命预测[J]. 山东大学学报(工学版), 2017, 47(5): 30-37. |
[11] | 路昌海. 基于Markov链的锅炉热负荷预测方法[J]. 山东大学学报(工学版), 2017, 47(3): 151-158. |
[12] | 刘岩,李幼军,陈萌. 基于EMD和SVM的抑郁症静息态脑电信号分类研究[J]. 山东大学学报(工学版), 2017, 47(3): 21-26. |
[13] | 李素姝,王士同,李滔. 基于LS-SVM与模糊补准则的特征选择方法[J]. 山东大学学报(工学版), 2017, 47(3): 34-42. |
[14] | 何正义,曾宪华,曲省卫,吴治龙. 基于集成深度学习的时间序列预测模型[J]. 山东大学学报(工学版), 2016, 46(6): 40-47. |
[15] | 包建业,王静. 基于离散裂隙网络模型的隧道涌水量预测[J]. 山东大学学报(工学版), 2016, 46(6): 127-134. |
|