您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (6): 45-51.doi: 10.6040/j.issn.1672-3961.0.2014.155

• 控制科学与工程 • 上一篇    下一篇

多涡卷超混沌系统自适应滑模同步控制

孙美美, 胡云安, 韦建明   

  1. 海军航空工程学院控制工程系, 山东烟台 264001
  • 收稿日期:2014-06-10 修回日期:2015-04-16 出版日期:2015-12-20 发布日期:2014-06-10
  • 通讯作者: 韦建明(1986-),男,河北迁西人,博士研究生,主要研究方向为自适应控制.E-mail:wjm604@163.com E-mail:wjm604@163.com
  • 作者简介:孙美美(1987-),女,山东威海人,博士研究生,主要研究方向为混沌同步控制.E-mail:smm6224582@sina.com
  • 基金资助:
    国家自然科学基金资助项目(60705030);山东省自然科学基金资助项目(ZR2010FQ005)

Synchronization of multiwing hyperchaotic systems via adaptive sliding mode control

SUN Meimei, HU Yun'an, WEI Jianming   

  1. Department of Control Engineering, Naval Astronautical and Aeronautical University, Yantai 264001, Shandong, China
  • Received:2014-06-10 Revised:2015-04-16 Online:2015-12-20 Published:2014-06-10

摘要: 研究了一类多涡卷超混沌系统的同步控制问题,同时考虑了不确定项和未知扰动的情况,提出了一种自适应滑模控制方案。综合利用滑模控制技术和自适应控制技术,消除了系统不确定性和未知扰动的影响,对于不确定性和未知扰动具有较好的鲁棒性。利用Lyapunov稳定性理论证明了系统同步误差渐近收敛到一个原点的小邻域内,系统渐近稳定。仿真结果验证了该方法的有效性。

关键词: 自适应控制, 多涡卷, 滑模控制, PI滑模面, 混沌同步, 超混沌

Abstract: An adaptive sliding mode control scheme was presented for the synchronization of a class of multiwing hyperchaotic system with uncertainties and unknown external disturbances. The sliding mode control and parameter adaptive principle were designed to realize the synchronization between the master system and slave system. Adaptive control technique and the sliding mode technique were both used to introduce robustness and eliminate systematic uncertainties and affections from external disturbances. It is proved that synchronization errors converge to a small neighbourhood of the origin by using Lyapunov stability theory. Finally, simulation results verified the effectiveness of the proposed control scheme.

Key words: multiwing, hyperchaos, sliding mode control, chaos sychronization, adaptive control, PI sliding mode

中图分类号: 

  • TP273
[1] PECORA L M, CAROLL T L. Synchronization in chaotic systems[J]. Physics Review Letters, 1990, 64(8):821-824.
[2] YASSEN M T. Controlling chaos and synchronization for new chaotic system using linear feedback control[J]. Chaos, Solitons & Fractals, 2005, 26(3):913-920.
[3] WANG F, LIU C. A new criterion for chaos and hyperchaos synchronization using linear feedback control[J]. Physics Letters(Section A), 2006, 360(2):274-278.
[4] RAFIKOV M, BALTHAZAR J M. On control and synchronization in chaotic and hyperchaotic systems via linear feedback control[J]. Communications in Nonlinear Science and Numerical Simulation, 2008, 13(7):1246-1255.
[5] CHEN H H, SHEU G J, LIN Y L, et al. Chaos synchronization between two different chaotic systems via nonlinear feedback control[J]. Nonlinear Analysis:Theory, Methods & Applications, 2009, 70(12):4393-4401.
[6] LV L, GUO Z A, ZHANG C. Synchronization between two different chaotic systems with nonlinear feedback control[J]. Chinese Physics, 2007, 16(6):1603-1607.
[7] CHEN M, CHEN W. Robust adaptive neural network synchronization controller design for a class of time delay uncertain chaotic systems[J]. Chaos, Solitons & Fractals, 2009, 41(5):2716-2724.
[8] SALARIEH H, ALASTY A. Adaptive synchronization of two chaotic systems with stochastic unknown parameters[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(2):508-519.
[9] KEBRIAEI H, JAVAD YAZDANPANAH M. Robust adaptive synchronization of different uncertain chaotic systems subject to input nonlinearity[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(2):430-441.
[10] LI X F, LEUNG A C S, LIU X J, et al. Adaptive synchronization of identical chaotic and hyper-chaotic systems with uncertain parameters[J]. Nonlinear Analysis:Real World Applications, 2010, 11(4):2215-2223.
[11] KOOFIGAR H R, HOSSEINNIA S, SHEIKHOLESLAM F. Robust adaptive synchronization of uncertain unified chaotic systems[J]. Nonlinear Dynamics, 2010, 59(3):477-483.
[12] WU X J, LU H T. Adaptive generalized function projective lag synchronization of different chaotic systems with fully uncertain parameters[J]. Chaos, Solitons & Fractals, 2011, 44(10):802-810.
[13] YANG C C. Adaptive synchronization of Lü hyperchaotic system with uncertain parameters based on single-input controller[J]. Nonlinear Dynamics, 2011, 63(3):447-454.
[14] LIU P, LIU S. Robust adaptive full state hybrid synchronization of chaotic complex systems with unknown parameters and external disturbances[J]. Nonlinear Dynamics, 2012, 70(1):585-599.
[15] WANG C, GE S S. Adaptive synchronization of uncertain chaotic systems via backstepping design[J]. Chaos, Solitons & Fractals, 2001, 12(7):1199-1206.
[16] FARIVAR F, SHOOREHDELI M A, NEKOUI M A, et al. Generalized projective synchronization for chaotic systems via Gaussian radial basis adaptive backstepping control[J]. Chaos, Solitons & Fractals, 2009, 42(2):826-839.
[17] NJAH A N. Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques[J]. Nonlinear Dynamics, 2010, 61(1-2):1-9.
[18] YU B Y, LI H X. Adaptive hybrid projective synchronization of uncertain chaotic systems based on backstepping design[J]. Nonlinear Analysis:Real World Applications, 2011, 12(1):388-393.
[19] LI H Y, HU Y A. Backstepping-based synchronization control of cross-strict feedback hyper-chaotic systems[J]. Chinese Physics Letters, 2011, 28(12):120508.
[20] JI D H, JEONG S C, PARK J H, et al. Robust adaptive backstepping synchronization for a class of uncertain chaotic systems using fuzzy disturbance observer[J]. Nonlinear Dynamics, 2012, 69(3):1125-1136.
[21] LI S Y, YANG C H, LIN C T, et al. Adaptive synchronization of chaotic systems with unknown parameters via new backstepping strategy[J]. Nonlinear Dynamics, 2012, 70(3):2129-2143.
[22] LI H Y, HU Y A. Robust sliding-mode backstepping design for synchronization control of cross-strict feedback hyperchaotic systems with unmatched uncertainties[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(10):3904-3913.
[23] POURMAHMOOD M, KHANMOHAMMADI S, ALIZADEH G. Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(7):2853-2868.
[24] YANG L, YANG J. Robust finite-time convergence of chaotic systems via adaptive terminal sliding mode scheme[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(6):2405-2413.
[25] AGHABABA M P, HEYDARI A. Chaos synchronization between two different chaotic systems with uncertainties, external disturbances, unknown parameters and input nonlinearities[J]. Applied Mathematical Modelling, 2012, 36(4):1639-1652.
[26] AGHABABA M P, AKBARI M E. A chattering-free robust adaptive sliding mode controller for synchronization of two different chaotic systems with unknown uncertainties and external disturbances[J]. Applied Mathematics and Computation, 2012, 218(9):5757-5768.
[27] 王银河,高子林,王钦若,等.基于自适应模糊逻辑系统的一类混沌系统同步控制[J]. 控制与决策, 2013, 28(9):1309-1314. WANG Y H, GAO Z L, WANG Q R, et al. Synchronization control for a class of chaotic systems based on adaptive fuzzy logic systems[J]. Control and Decision, 2013, 28(9):1309-1314.
[28] LI S Y, YANG C H, CHEN S A, et al. Fuzzy adaptive synchronization of time-reversed chaotic systems via a new adaptive control strategy[J]. Information Sciences, 2013, 222:486-500.
[29] XU J X, YAN R. Synchronization of chaotic systems via learning control[J]. International journal of bifurcation and Chaos, 2005, 15(12):4035-4041.
[30] SUN Y P, LI J M, WANG J A, et al. Generalized projective synchronization of chaotic systems via adaptive learning control[J]. Chinese Physics B, 2010, 19(2):020505.
[31] SUYKENS J A K, VANDEWALLE J. Generation of n-double scrolls(n=1, 2, 3, 4,…)[J]. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications, 1993, 40(11):861-867.
[32] ZHONG G Q, MAN K F, CHEN G. A systematic approach to generating n-scroll attractors[J]. International Journal of Bifurcation and Chaos, 2002, 12(12):2907-2915.
[33] WANG F Q, LIU C X. Generation of multi-scroll chaotic attractors via the saw-tooth function[J]. International Journal of Modern Physics B, 2008, 22(15):2399-2405.
[34] FEI Y, CHUN-HUA W, JIN-WEN Y, et al. Novel four-dimensional autonomous chaotic system generating one-, two-, three-and four-wing attractors[J]. Chinese Physics B, 2011, 20(11):110505.
[35] 吴忠强,邝钰. 多涡卷混沌系统的广义同步控制[J]. 物理学报,2009,58(10):6823-6827. WU Z Q, KUANG Y. Generalized synchronization control of multi-scroll chaotic systems[J]. Acta Physica Sinica, 2009, 58(10):6823-6827.
[36]余飞,王春华,胡燕,等. 具有完全不确定参数的五项双曲型混沌系统的投影同步[J]. 物理学报,2012,61(6):060505.YU Fei, WANG Chunhua, HU Yan, et al. Projective synchronization of a five-term hyperbolic-type chaotic system with fully uncertain parameters[J]. Acta Physica Sinica, 2012, 61(6):060505.
[37]刘恒,余海军,向伟. 带未知扰动的多涡卷混沌系统修正函数时滞投影同步[J]. 物理学报,2012,61(18):180503.LIU Heng, YU Haijun, XIANG Wei. Modified function projective lag synchronization for multi-scroll chaotic system with unknown disturbances[J]. Acta Physica Sinica, 2012, 61(18):180503.
[38]ELABBASY E M, AGIZA H N, EL-DESSOKY M M. Adaptive synchronization for four-scroll attractor with fully unknown parameters[J]. Physics Letters A, 2006, 349(1):187-191.
[39] SUNDARAPANDIAN V. Global chaos synchronization of four-scroll and four-wing attractors by active nonlinear control[J]. International Journal on Computer Science and Engineering, 2011, 3(5):2145-2155.
[40] YU Simin, LU Jinhu. Design and implementation of grid multiwing hyperchaotic Lorenz system family via switching control and constructing super-heteroclinic loops[J]. IEEE Transactions on Circuits and Systems, 2012, 59(5):1015-1027.
[1] 王春彦,邸金红. 基于降阶方法的分数阶多涡卷混沌系统的同步控制[J]. 山东大学学报(工学版), 2018, 48(5): 91-94.
[2] 孟晓玲,王建军. 一类分数阶冠状动脉系统的混沌同步控制[J]. 山东大学学报(工学版), 2018, 48(4): 55-60.
[3] 毛北行. 纠缠混沌系统的比例积分滑模同步[J]. 山东大学学报(工学版), 2018, 48(4): 50-54.
[4] 叶丹,张天予,李奎. 全局信息未知的多智能体自适应容错包容控制[J]. 山东大学学报(工学版), 2017, 47(5): 1-6.
[5] 毛北行,程春蕊. 分数阶Victor-Carmen混沌系统的自适应滑模控制[J]. 山东大学学报(工学版), 2017, 47(4): 31-36.
[6] 李庆宾,王晓东. 分数阶情绪模型的终端滑模控制混沌同步[J]. 山东大学学报(工学版), 2017, 47(3): 84-88.
[7] 毛北行,王东晓. 分数阶多涡卷系统滑模控制混沌同步[J]. 山东大学学报(工学版), 2017, 47(3): 79-83.
[8] 解静, 考永贵, 高存臣, 张孟乔. 变时滞不确定广义Markovian跳系统的滑模控制[J]. 山东大学学报(工学版), 2014, 44(4): 31-38.
[9] 赵占山1,2, 张静3, 孙连坤1, 丁刚1. 有限时间收敛的滑模自适应控制器设计[J]. 山东大学学报(工学版), 2012, 42(4): 74-78.
[10] 张迎春 王佐勋 王桂娟. 基于神经网络控制器的高压电缆测温系统[J]. 山东大学学报(工学版), 2009, 39(5): 62-67.
[11] 黄琼 . 一类拓扑不等价三维系统的混沌同步[J]. 山东大学学报(工学版), 2008, 38(3): 7-9 .
[12] 金鑫,江铭炎 . 基于非线性控制的异结构混沌同步控制[J]. 山东大学学报(工学版), 2007, 37(5): 78-82 .
[13] 周靖,温长云 . 基于反推方法的自适应内模原理的多输入多输出系统控制[J]. 山东大学学报(工学版), 2007, 37(5): 1-10 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!