山东大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (6): 45-51.doi: 10.6040/j.issn.1672-3961.0.2014.155
孙美美, 胡云安, 韦建明
SUN Meimei, HU Yun'an, WEI Jianming
摘要: 研究了一类多涡卷超混沌系统的同步控制问题,同时考虑了不确定项和未知扰动的情况,提出了一种自适应滑模控制方案。综合利用滑模控制技术和自适应控制技术,消除了系统不确定性和未知扰动的影响,对于不确定性和未知扰动具有较好的鲁棒性。利用Lyapunov稳定性理论证明了系统同步误差渐近收敛到一个原点的小邻域内,系统渐近稳定。仿真结果验证了该方法的有效性。
中图分类号:
[1] PECORA L M, CAROLL T L. Synchronization in chaotic systems[J]. Physics Review Letters, 1990, 64(8):821-824. [2] YASSEN M T. Controlling chaos and synchronization for new chaotic system using linear feedback control[J]. Chaos, Solitons & Fractals, 2005, 26(3):913-920. [3] WANG F, LIU C. A new criterion for chaos and hyperchaos synchronization using linear feedback control[J]. Physics Letters(Section A), 2006, 360(2):274-278. [4] RAFIKOV M, BALTHAZAR J M. On control and synchronization in chaotic and hyperchaotic systems via linear feedback control[J]. Communications in Nonlinear Science and Numerical Simulation, 2008, 13(7):1246-1255. [5] CHEN H H, SHEU G J, LIN Y L, et al. Chaos synchronization between two different chaotic systems via nonlinear feedback control[J]. Nonlinear Analysis:Theory, Methods & Applications, 2009, 70(12):4393-4401. [6] LV L, GUO Z A, ZHANG C. Synchronization between two different chaotic systems with nonlinear feedback control[J]. Chinese Physics, 2007, 16(6):1603-1607. [7] CHEN M, CHEN W. Robust adaptive neural network synchronization controller design for a class of time delay uncertain chaotic systems[J]. Chaos, Solitons & Fractals, 2009, 41(5):2716-2724. [8] SALARIEH H, ALASTY A. Adaptive synchronization of two chaotic systems with stochastic unknown parameters[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(2):508-519. [9] KEBRIAEI H, JAVAD YAZDANPANAH M. Robust adaptive synchronization of different uncertain chaotic systems subject to input nonlinearity[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(2):430-441. [10] LI X F, LEUNG A C S, LIU X J, et al. Adaptive synchronization of identical chaotic and hyper-chaotic systems with uncertain parameters[J]. Nonlinear Analysis:Real World Applications, 2010, 11(4):2215-2223. [11] KOOFIGAR H R, HOSSEINNIA S, SHEIKHOLESLAM F. Robust adaptive synchronization of uncertain unified chaotic systems[J]. Nonlinear Dynamics, 2010, 59(3):477-483. [12] WU X J, LU H T. Adaptive generalized function projective lag synchronization of different chaotic systems with fully uncertain parameters[J]. Chaos, Solitons & Fractals, 2011, 44(10):802-810. [13] YANG C C. Adaptive synchronization of Lü hyperchaotic system with uncertain parameters based on single-input controller[J]. Nonlinear Dynamics, 2011, 63(3):447-454. [14] LIU P, LIU S. Robust adaptive full state hybrid synchronization of chaotic complex systems with unknown parameters and external disturbances[J]. Nonlinear Dynamics, 2012, 70(1):585-599. [15] WANG C, GE S S. Adaptive synchronization of uncertain chaotic systems via backstepping design[J]. Chaos, Solitons & Fractals, 2001, 12(7):1199-1206. [16] FARIVAR F, SHOOREHDELI M A, NEKOUI M A, et al. Generalized projective synchronization for chaotic systems via Gaussian radial basis adaptive backstepping control[J]. Chaos, Solitons & Fractals, 2009, 42(2):826-839. [17] NJAH A N. Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques[J]. Nonlinear Dynamics, 2010, 61(1-2):1-9. [18] YU B Y, LI H X. Adaptive hybrid projective synchronization of uncertain chaotic systems based on backstepping design[J]. Nonlinear Analysis:Real World Applications, 2011, 12(1):388-393. [19] LI H Y, HU Y A. Backstepping-based synchronization control of cross-strict feedback hyper-chaotic systems[J]. Chinese Physics Letters, 2011, 28(12):120508. [20] JI D H, JEONG S C, PARK J H, et al. Robust adaptive backstepping synchronization for a class of uncertain chaotic systems using fuzzy disturbance observer[J]. Nonlinear Dynamics, 2012, 69(3):1125-1136. [21] LI S Y, YANG C H, LIN C T, et al. Adaptive synchronization of chaotic systems with unknown parameters via new backstepping strategy[J]. Nonlinear Dynamics, 2012, 70(3):2129-2143. [22] LI H Y, HU Y A. Robust sliding-mode backstepping design for synchronization control of cross-strict feedback hyperchaotic systems with unmatched uncertainties[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(10):3904-3913. [23] POURMAHMOOD M, KHANMOHAMMADI S, ALIZADEH G. Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(7):2853-2868. [24] YANG L, YANG J. Robust finite-time convergence of chaotic systems via adaptive terminal sliding mode scheme[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(6):2405-2413. [25] AGHABABA M P, HEYDARI A. Chaos synchronization between two different chaotic systems with uncertainties, external disturbances, unknown parameters and input nonlinearities[J]. Applied Mathematical Modelling, 2012, 36(4):1639-1652. [26] AGHABABA M P, AKBARI M E. A chattering-free robust adaptive sliding mode controller for synchronization of two different chaotic systems with unknown uncertainties and external disturbances[J]. Applied Mathematics and Computation, 2012, 218(9):5757-5768. [27] 王银河,高子林,王钦若,等.基于自适应模糊逻辑系统的一类混沌系统同步控制[J]. 控制与决策, 2013, 28(9):1309-1314. WANG Y H, GAO Z L, WANG Q R, et al. Synchronization control for a class of chaotic systems based on adaptive fuzzy logic systems[J]. Control and Decision, 2013, 28(9):1309-1314. [28] LI S Y, YANG C H, CHEN S A, et al. Fuzzy adaptive synchronization of time-reversed chaotic systems via a new adaptive control strategy[J]. Information Sciences, 2013, 222:486-500. [29] XU J X, YAN R. Synchronization of chaotic systems via learning control[J]. International journal of bifurcation and Chaos, 2005, 15(12):4035-4041. [30] SUN Y P, LI J M, WANG J A, et al. Generalized projective synchronization of chaotic systems via adaptive learning control[J]. Chinese Physics B, 2010, 19(2):020505. [31] SUYKENS J A K, VANDEWALLE J. Generation of n-double scrolls(n=1, 2, 3, 4,…)[J]. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications, 1993, 40(11):861-867. [32] ZHONG G Q, MAN K F, CHEN G. A systematic approach to generating n-scroll attractors[J]. International Journal of Bifurcation and Chaos, 2002, 12(12):2907-2915. [33] WANG F Q, LIU C X. Generation of multi-scroll chaotic attractors via the saw-tooth function[J]. International Journal of Modern Physics B, 2008, 22(15):2399-2405. [34] FEI Y, CHUN-HUA W, JIN-WEN Y, et al. Novel four-dimensional autonomous chaotic system generating one-, two-, three-and four-wing attractors[J]. Chinese Physics B, 2011, 20(11):110505. [35] 吴忠强,邝钰. 多涡卷混沌系统的广义同步控制[J]. 物理学报,2009,58(10):6823-6827. WU Z Q, KUANG Y. Generalized synchronization control of multi-scroll chaotic systems[J]. Acta Physica Sinica, 2009, 58(10):6823-6827. [36]余飞,王春华,胡燕,等. 具有完全不确定参数的五项双曲型混沌系统的投影同步[J]. 物理学报,2012,61(6):060505.YU Fei, WANG Chunhua, HU Yan, et al. Projective synchronization of a five-term hyperbolic-type chaotic system with fully uncertain parameters[J]. Acta Physica Sinica, 2012, 61(6):060505. [37]刘恒,余海军,向伟. 带未知扰动的多涡卷混沌系统修正函数时滞投影同步[J]. 物理学报,2012,61(18):180503.LIU Heng, YU Haijun, XIANG Wei. Modified function projective lag synchronization for multi-scroll chaotic system with unknown disturbances[J]. Acta Physica Sinica, 2012, 61(18):180503. [38]ELABBASY E M, AGIZA H N, EL-DESSOKY M M. Adaptive synchronization for four-scroll attractor with fully unknown parameters[J]. Physics Letters A, 2006, 349(1):187-191. [39] SUNDARAPANDIAN V. Global chaos synchronization of four-scroll and four-wing attractors by active nonlinear control[J]. International Journal on Computer Science and Engineering, 2011, 3(5):2145-2155. [40] YU Simin, LU Jinhu. Design and implementation of grid multiwing hyperchaotic Lorenz system family via switching control and constructing super-heteroclinic loops[J]. IEEE Transactions on Circuits and Systems, 2012, 59(5):1015-1027. |
[1] | 王春彦,邸金红. 基于降阶方法的分数阶多涡卷混沌系统的同步控制[J]. 山东大学学报(工学版), 2018, 48(5): 91-94. |
[2] | 孟晓玲,王建军. 一类分数阶冠状动脉系统的混沌同步控制[J]. 山东大学学报(工学版), 2018, 48(4): 55-60. |
[3] | 毛北行. 纠缠混沌系统的比例积分滑模同步[J]. 山东大学学报(工学版), 2018, 48(4): 50-54. |
[4] | 叶丹,张天予,李奎. 全局信息未知的多智能体自适应容错包容控制[J]. 山东大学学报(工学版), 2017, 47(5): 1-6. |
[5] | 毛北行,程春蕊. 分数阶Victor-Carmen混沌系统的自适应滑模控制[J]. 山东大学学报(工学版), 2017, 47(4): 31-36. |
[6] | 李庆宾,王晓东. 分数阶情绪模型的终端滑模控制混沌同步[J]. 山东大学学报(工学版), 2017, 47(3): 84-88. |
[7] | 毛北行,王东晓. 分数阶多涡卷系统滑模控制混沌同步[J]. 山东大学学报(工学版), 2017, 47(3): 79-83. |
[8] | 解静, 考永贵, 高存臣, 张孟乔. 变时滞不确定广义Markovian跳系统的滑模控制[J]. 山东大学学报(工学版), 2014, 44(4): 31-38. |
[9] | 赵占山1,2, 张静3, 孙连坤1, 丁刚1. 有限时间收敛的滑模自适应控制器设计[J]. 山东大学学报(工学版), 2012, 42(4): 74-78. |
[10] | 张迎春 王佐勋 王桂娟. 基于神经网络控制器的高压电缆测温系统[J]. 山东大学学报(工学版), 2009, 39(5): 62-67. |
[11] | 黄琼 . 一类拓扑不等价三维系统的混沌同步[J]. 山东大学学报(工学版), 2008, 38(3): 7-9 . |
[12] | 金鑫,江铭炎 . 基于非线性控制的异结构混沌同步控制[J]. 山东大学学报(工学版), 2007, 37(5): 78-82 . |
[13] | 周靖,温长云 . 基于反推方法的自适应内模原理的多输入多输出系统控制[J]. 山东大学学报(工学版), 2007, 37(5): 1-10 . |
|