您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2011, Vol. 41 ›› Issue (2): 5-11.

• 机器学习与数据挖掘 • 上一篇    下一篇

一种IVUS序列图像内外膜边缘的自动提取方法

曲怀敬1,孙丰荣2,张运楚1,姚桂华3,吴延荣1,杨明强2   

  1. 1. 山东建筑大学信息与电气工程学院, 山东 济南 250101; 2. 山东大学信息科学与工程学院, 山东 济南 250100;
    3. 山东大学齐鲁医院心内科, 山东 济南 250012
  • 收稿日期:2010-07-26 出版日期:2011-04-16 发布日期:2010-07-26
  • 作者简介:曲怀敬(1965- ),男,山东烟台人,副教授,工学博士,主要研究方向为多尺度多方向图像处理等. Email: quhuaijing@sdjzu.edu.cn
  • 基金资助:

    国家自然科学基金资助项目(30870666)

An automated method for the detection of the lumen and media-adventitia
 contours of sequential IVUS images

QU Huai-jing1, SUN Feng-rong2, ZHANG  Yun-chu1, YAO Gui-hua3, WU Yan-rong1, YANG Ming-qiang2   

  1. 1. School of Information & Electric Engineering, Shandong Jianzhu University, Jinan 250101, China;
    2. School of Information Science and Engineering, Shandong University, Jinan 250100, China;
    3. Cardiology Department of Qilu Hospital,  Shandong University, Jinan 250012, China
  • Received:2010-07-26 Online:2011-04-16 Published:2010-07-26

摘要:

针对现有的血管内超声(intravascular ultrasound, IVUS)图像边缘提取存在的不足,提出一种改进的IVUS序列图像内外膜边缘自动提取的方法。该方法首先在Contourlet变换域对图像的斑点噪声进行有效去除;然后根据序列图像的物理特征和结构信息,自动确定图像内外膜边缘的初始轮廓;最后采用活动轮廓模型和去噪后图像灰阶梯度特征量,通过动态规划技术自动提取图像的内外膜边缘。实验结果表明,该方法算法简单,准确性较高,具有一定的临床应用价值。

关键词: 血管内超声, 斑点去噪, 活动轮廓模型, 动态规划, 边缘提取

Abstract:

Because of  shortcomings of the existing contour detection of the intravascular ultrasound (IVUS) image, an improved method used for automatically detecting  the lumen and mediaadventitia contours of  sequential IVUS images was presented. First, the speckle noise of the image was effectively removed  in the contourlet transform domain. Then, the initial lumen and mediaadventitia contours of the image were estimated according to physical properties and structural information of sequential images. Finally, using the active contour model and the grey level gradient of the denoised image, and according to the dynamic programming technique, the lumen and mediaadventitia contours of the image were automatically detected. Experimental results showed that the proposed method is algorithmically simple, statistically accurate, and has clinical value.

Key words:  intravascular ultrasound, speckle denoising, active contour model, dynamic programming, contour detection

[1] 李前娜,孙丰荣,李艳玲,李晓峰,姚桂华,张运, . 基于时/空滤波噪声抑制算法和活动轮廓模型的血管内超声图像边缘提取[J]. 山东大学学报(工学版), 2006, 36(5): 44-48 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!