山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (6): 72-81.doi: 10.6040/j.issn.1672-3961.0.2023.196
• 土木工程 • 上一篇
胡瑶瑶1,徐彬2,3,马川义1,黄新杰2,4,张波4,李彪2,4*
HU Yaoyao1, XU Bin2,3, MA Chuanyi1, HUANG Xinjie2,4, ZHANG Bo4, LI Biao2,4*
摘要: 为探究激光参数对破岩效果的影响,开展激光辐照岩石穿孔效应研究。借助MATLAB软件获取熔蚀坑孔洞周围热裂纹宏观拓展形貌,揭示激光破岩参数对岩石热裂解特性影响。分析激光耗能与熔蚀坑孔洞体积间的定量关系,阐明激光参数对穿孔比能、切口比能和钻进速度的影响规律。结果表明:激光辐照岩石过程中首先在辐照点周围生成熔蚀坑孔洞,随后孔洞周围的热致微裂纹扩展发育形成辐射性宏观热裂纹;随着激光功率和辐照时间的增加,岩石热裂纹累积总面积及累积总长度增加,熔蚀坑孔洞体积也逐渐增大;兼顾熔蚀坑孔洞体积、宏观热裂纹形成条件以及破岩效能,建议激光功率不小于4 kW,同时辐照时间不超过5 s。
中图分类号:
[1] BAYATI M, HAMIDI J K. A case study on TBM tunnelling in fault zones and lessons learned from ground improvement[J]. Tunnelling and Underground Space Technology, 2017, 63: 162-170. [2] 薛翊国, 孔凡猛, 杨为民, 等. 川藏铁路沿线主要不良地质条件与工程地质问题[J]. 岩石力学与工程学报, 2020, 39(3): 445-468. XUE Yiguo, KONG Fanmeng, YANG Weimin, et al. Main unfavorable geological conditions and engineering geological problems along Sichuan-Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(3): 445-468. [3] DE LA FUENTE M, SULEM J, TAHERZADEH R, et al. Tunneling in squeezing ground: effect of the excavation method[J]. Rock Mechanics and Rock Engineering, 2020, 53: 601-623. [4] WANG T, XIAO X, ZHU H, et al. Experimental study on Longmaxi shale breaking mechanism with micro-PDC bit[J]. Rock Mechanics and Rock Engineering, 2017, 50: 2795-2804. [5] DENG L C, LI X Z, XU W, et al. Integrated monitoring of lithology parameters while drilling in small-scale coring platform[J]. Rock Mechanics and Rock Engineering, 2022, 55(11): 7269-7288. [6] 赵志刚, 张凯, 尹延春, 等. 不同应力下煤体钻孔试验及钻进能量响应研究[J]. 岩土力学, 2023(10):1-8. ZHAO Zhigang, ZHANG Kai, YIN Yanchun, et al. Research into drilling test and drilling energy response of coal under different stresses[J]. Rock and Soil Mechanics, 2023(10):1-8. [7] 范晓东. PDC钻头在三叠系泥岩钻进过程中的技术问题及对策研究[J]. 西部资源, 2019(3): 5. FAN Xiaodong. Study on the technical problems and countermeasures of PDC bits in the drilling process of triassic mudstone[J]. West Resou, 2019(3): 5. [8] ZHU X, LUO Y, LIU W, et al. Rock cutting mechanism of special-shaped PDC cutter in heterogeneous granite formation[J]. Journal of Petroleum Science and Engineering, 2022, 210: 110020. [9] CAPIK M, YILMAZ A O. Development models for the drill bit lifetime prediction and bit wear types[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 139: 104633. [10] 程建龙, 邹清友, 杨圣奇, 等. 水力切缝上方TBM滚刀贯入破坏机制模拟研究[J]. 岩土力学, 2022, 43(8): 2317-2326. CHENG Jianlong, ZOU Qingyou, YANG Shengqi, et al. Simulation of indentation behavior of TBM disc cutter and failure mechanism of hard rock assisted by hydraulic precutting kerfs[J]. Rock and Soil Mechanics, 2022, 43(8): 2317-2326. [11] JIANG Y, ZENG J, XU C, et al. Experimental study on TBM cutter penetration damage process of highly abrasive hard rock pre-cut by high-pressure water jet[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(12): 511. [12] LU G M, FENG X T, LI Y H, et al. The microwave-induced fracturing of hard rock[J]. Rock Mechanics and Rock Engineering, 2019, 52: 3017-3032. [13] WANG S, XU Y, XIA K, et al. Dynamic fragmentation of microwave irradiated rock[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(2): 300-310. [14] VOGLER D, WALSH S D C, SAAR M O. A numerical investigation into key factors controlling hard rock excavation via electropulse stimulation[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(4): 793-801. [15] YUDIN A S, ZHURKOV M Y, MARTEMYANOV S M, et al. Electrical discharge drilling of granite with positive and negative polarity of voltage pulses[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104058. [16] RUI F, ZHAO G F. Experimental and numerical investigation of laser-induced rock damage and the implications for laser-assisted rock cutting[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 139: 104653. [17] WANG Y, SHI Y, JIANG J, et al. Experimental study on modified specific energy, temperature field and mechanical properties of Xuzhou limestone irradiated by fiber laser[J]. Heat and Mass Transfer, 2020, 56: 161-173. [18] YAN F, GU Y, WANG Y, et al. Study on the interaction mechanism between laser and rock during perforation[J]. Optics & Laser Technology, 2013, 54: 303-308. [19] GUO C, SUN Y, YUE H, et al. Experimental research on laser thermal rock breaking and optimization of the process parameters[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 160: 105251. [20] HU M, BAI Y, CHEN H, et al. Engineering characteristics of laser perforation with a high power fiber laser in oil and gas wells[J]. Infrared Physics & Technology, 2018, 92: 103-108. [21] 郭辰光, 孙瑜, 岳海涛, 等. 激光辐照热裂破岩规律及力学性能[J]. 煤炭学报, 2022(4):047. GUO Chenguang, SUN Yu, YUE Haitao, et al. Law and mechanics of thermal cracking of rock by laser irradiation[J]. Journal of China Coal Society, 2022(4): 047. [22] LI M, HAN B, ZHANG Q, et al. Investigation on rock breaking for sandstone with high power density laser beam[J]. Optik, 2019, 180: 635-647. [23] PAN H, HU Y, KANG Y, et al. The influence of laser irradiation parameters on thermal breaking characteristics of shale[J]. Journal of Petroleum Science and Engineering, 2022, 213: 110397. [24] SHIN J S, OH S Y, PARK H, et al. Underwater cutting of 50 and 60 mm thick stainless steel plates using a 6 kW fiber laser for dismantling nuclear facilities[J]. Optics & Laser Technology, 2019, 115: 1-8. [25] ZHU J, ZHAN H L, ZHAO K, et al. Thermal spallation in rock revealed by ultraviolet laser-induced voltage[J]. Sci. China Phys. Mech. Astron, 2019, 62: 974222. [26 ] LI M, HAN B, ZHANG S, et al. Numerical simulation and experimental investigation on fracture mechanism of granite by laser irradiation[J]. Optics & Laser Technology, 2018, 106: 52-60. [27] CHEN K, HUANG Z, DENG R, et al. Numerical simulation and test investigation on phase transition and thermal cracking process of sandstone by laser drilling[J]. Rock Mechanics and Rock Engineering, 2022, 55(4): 2129-2147. |
[1] | 张强勇,燕志超,郭鑫. 地下实验室开挖围岩损伤评价方法及应用[J]. 山东大学学报 (工学版), 2023, 53(5): 57-64, 73. |
[2] | 李婧,张伟俊,李赟鹏,冯春,张一鸣. 浅埋煤层开采诱发地下水渗流过程[J]. 山东大学学报 (工学版), 2023, 53(3): 78-87. |
[3] | 王春国. 复合地层全断面硬岩隧道掘进机下穿立交桥研究[J]. 山东大学学报 (工学版), 2021, 51(3): 45-51. |
[4] | 孙杰,武科,郑扬,李树忱,袁超,王修伟. 城市地铁TBM隧道掘进诱发既有建筑物变形的空间属性效应[J]. 山东大学学报 (工学版), 2021, 51(1): 32-38. |
[5] | 徐子瑶,虞松,付强. 含层状节理岩体力学性质数值模拟研究[J]. 山东大学学报 (工学版), 2020, 50(3): 66-72. |
[6] | 谢雅娟,虞松,李邦祥,徐翔,朱维申. 含裂隙水预制平面裂隙的启裂理论与试验验证[J]. 山东大学学报 (工学版), 2019, 49(4): 36-43. |
[7] | 刘健,胡南琦,徐宝军,岳秀丽,齐泊良,仲奇. 水泥基土石坝防渗注浆材料试验[J]. 山东大学学报(工学版), 2018, 48(2): 39-45. |
[8] | 刘洋. 乘性故障对开闭环系统故障诊断性能的影响[J]. 山东大学学报(工学版), 2017, 47(5): 38-43. |
[9] | 刘洋,刘博,王峰. 基于Parameter Server框架的大数据挖掘优化算法[J]. 山东大学学报(工学版), 2017, 47(4): 1-6. |
[10] | 陈方明,胡泉光,宁光忠. 三轴应力条件下粉砂质泥岩分级松弛特性[J]. 山东大学学报(工学版), 2017, 47(3): 125-129. |
[11] | 胡泉光,陈方明,宁光忠. CW-TOPSIS岩爆评判模型及应用[J]. 山东大学学报(工学版), 2017, 47(2): 20-25. |
[12] | 万利,王春河,王琦,李术才,邵行,江贝,孙会彬,秦乾. 超大断面隧道软弱围岩控制机制及应用[J]. 山东大学学报(工学版), 2017, 47(1): 59-67. |
[13] | 张伟,李海涛,王剑,王莉. 砂浆模拟裂隙岩体在动静组合荷载下的SHPB试验研究[J]. 山东大学学报(工学版), 2016, 46(6): 97-104. |
[14] | 蒋明镜, 方威, 司马军. 模拟岩石的平行粘结模型微观参数标定[J]. 山东大学学报(工学版), 2015, 45(4): 50-56. |
[15] | 郑毅, 朱成璋. 基于深度信念网络的PM2.5预测[J]. 山东大学学报(工学版), 2014, 44(6): 19-25. |
|