山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (3): 78-87.doi: 10.6040/j.issn.1672-3961.0.2021.451
李婧1,张伟俊2,李赟鹏1,冯春3,4,张一鸣1*
LI Jing1, ZHANG Weijun2, LI Yunpeng1, FENG Chun3,4, ZHANG Yiming1*
摘要: 针对榆神矿区覆岩层的红土层遇水展现出的裂隙张开-弥合效应,采用连续-非连续单元法(continuous-discontinuous element method, CDEM)研究表征黏性土层塑性变形特征的力学本构,对该地区黏土层中裂隙张开-弥合过程重现,并对浅层煤层开采诱发的水-力渗流过程展开分析。结果表明,红土层遇水膨胀,对周围土体产生挤压作用,部分裂缝会发生弥合现象,破裂度和导水裂隙带减少,土体体应变增大,整体位移上升,模拟结果的导水裂隙带高度与经验公式对比,相对误差为4%。与页岩水力压裂试验结果对比,裂缝发育面积、位置和厚度基本一致,验证了该模拟的有效性。
中图分类号:
[1] | 魏久传,吴复柱,谢道雷,等. 半胶结中低强度围岩导水裂缝带发育特征[J]. 煤炭学报, 2016, 41(4): 974-983. WEI Jiuchuan, WU Fuzhu, XIE Daolei, et al. Development characteristic of water flowing fractured zone under semicemented medium-low strength country rock[J]. Journal of Coal, 2016, 41(4): 974-983. |
[2] | 李树刚,李志梁,林海飞,等. 采高对采动裂隙演化规律的影响研究[J]. 矿业安全与环保, 2015, 42(5): 25-28. LI Shugang, LI Zhiliang, LIN Haifei, et al. Research on influence of mining height on mining fissure evolution[J]. Mining Safety and Environmental Protection, 2015, 42(5): 25-28. |
[3] | 许家林,朱卫兵,王晓振. 基于关键层位置的导水裂隙带高度预计方法[J]. 煤炭学报, 2012, 37(5): 762-769. XU Jialin, ZHU Weibing, WANG Xiaozhen. New method to predict the height of fractured water-conducting zone by location of key strata[J]. Journal of Coal, 2012, 37(5): 762-769. |
[4] | 闫立君. 采动上覆岩层导水裂隙带发育规律及影响因素分析[J]. 能源技术与管理, 2018, 43(6): 105-107. YAN Lijun. Analysis of development law and influencing factors of water-conducting fissure zone in mining overburden[J]. Energy Technology and Management, 2018, 43(6): 105-107. |
[5] | 钱鸣高, 缪协兴, 许家林. 岩层控制中的关键层理论研究[J]. 煤炭学报, 1996, 21(3): 2-7. QIAN Minggao, MIU Xiexing, XU Jialin. Study on the theory of key strata in rock strata control[J]. Journal of Coal, 1996, 21(3): 2-7. |
[6] | 缪协兴,钱鸣高. 采动岩体的关键层理论研究新进展[J]. 中国矿业大学学报, 2000, 29(1): 25-29. MIU Xiexing, QIAN Minggao. Advance in the key strata theory of mining rockmass[J]. Journal of China University of Mining and Technology, 2000, 29(1): 25-29. |
[7] | 缪协兴,陈荣华,浦海,等. 采场覆岩厚关键层破断与冒落规律分析[J]. 岩石力学与工程学报, 2005, 24(8): 1289-1295. MIU Xiexing, CHEN Ronghua, PU Hai, et al. Analysis of breakage and collapse of thlck key strata around coal face[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(8): 1289-1295. |
[8] | 许家林,钱鸣高. 岩层控制关键层理论的应用研究与实践[J]. 中国矿业, 2001, 10(6): 56-58. XU Jialin, QIAN Minggao. Study and application of dominant steatum theory for control of strata movement[J]. China's Mining, 2001, 10(6): 56-58. |
[9] | 许家林,钱鸣高. 覆岩关键层位置的判别方法[J]. 中国矿业大学学报, 2000, 29(5): 21-25. XU Jialin, QIAN Minggao. Method to distinfuish key strata in overburden[J]. Journal of China University of Mining and Technology, 2000, 29(5): 21-25. |
[10] | 刘治国,樊振丽,张玉军,等. 黏土隔水层抗采动能力试验研究[J]. 煤炭技术, 2017, 36(12): 63-65. LIU Zhiguo, FAN Zhenli, ZHANG Yujun, et al. Experimental study of resistance to mining influence ability of clay aquiclude[J]. Coal Technology, 2017, 36(12): 63-65. |
[11] | 范立民,蒋泽泉. 榆神矿区保水采煤的工程地质背景[J]. 煤田地质与勘探, 2004, 32(5): 32-35. FAN Limin, JIANG Zequan. Engineering geologic background of coal mining under water-containing condition in Yushen coal mining area[J]. Coal Geology and Exploration, 2004, 32(5): 32-35. |
[12] | 赵鑫. 近距离煤层开采顶板裂隙发育规律[J]. 冶金与材料, 2020, 40(6): 138-140. ZHAO Xin. Development law of roof crack in close distance coal seam mining[J]. Metallurgy and Materials, 2020, 40(6): 138-140. |
[13] | 樊振丽,刘治国. 厚黏土层软弱覆岩采动破坏的泥盖效应[J]. 采矿与安全工程学报, 2020, 37(6): 1196-1204. FAN Zhenli, LIU Zhiguo. Mud cover effect of mining induced failure of soft overburden in thick clay strata[J]. Journal of Mining and Safety Engineering, 2020, 37(6): 1196-1204. |
[14] | 黄庆享. 浅埋煤层保水开采岩层控制研究[J]. 煤炭学报, 2017, 42(1): 50-55. HUANG Qingxiang. Research on roof control of water conservation mining in shallow seam[J]. Journal of Coal, 2017, 42(1): 50-55. |
[15] | 黄庆享. 浅埋煤层覆岩隔水性与保水开采分类[J]. 岩石力学与工程学报, 2010, 29(增刊2): 3622-3627. HUANG Qingxiang. Classification control of water isolation and water retention mining for shallow coal seam overburden mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(Suppl.2): 3622-3627. |
[16] | 许家林. 煤矿绿色开采20年研究及进展[J]. 煤炭科学技术, 2020, 48(9): 1-15. XU Jialin. Research and progress of coal mine green mining in 20 years[J]. Coal Science and Technology, 2020, 48(9): 1-15. |
[17] | 冯春, 李世海, 郝卫红, 等. 基于CDEM的钻地弹侵彻爆炸全过程数值模拟研究[J]. 振动与冲击, 2017, 36(13): 11-18. FENG Chun, LI Shihai, HAO Weihong, et al.Numerical simulation for penetrating and blasting process pf EPW based on CDEM[J]. Vibration and Shock, 2017, 36(13): 11-18. |
[18] | ZHU Xinguang, FENG Chun, CHENG Pengda, et al. A novel three-dimensional hydraulic fracturing model based on continuous-discontinuous element method[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 383(6): 113887. |
[19] | TAN Peng, JIN Yan, HAN Ke, et al. Analysis of hydraulic fracture initiation and vertical propagation behavior in laminated shale formation[J]. Fuel, 2017, 206(15):482-493. |
[20] | 黄庆享,蔚保宁,张文忠. 浅埋煤层黏土隔水层下行裂隙弥合研究[J]. 采矿与安全工程学报, 2010, 27(1): 35-39. HUANG Qingxiang, WEI Baoning, ZHANG Wenzhong. Study on downward crack closing of clay aquiclude in shallowly buried coal seam[J]. Journal of Mining and Safety Engineering, 2010, 27(1): 35-39. |
[21] | 郭影,姜忻良,曹东波, 等. 一种渗流吸水诱发岩体强度弱化的有限体积数值计算方法[J]. 工程力学, 2018, 35(7): 139-149. GUO Ying, JIANG Xinliang, CAO Dongbo, et al. A finite volume numerical simulation method for rock mass strength weakening by seepage water absorbing[J]. Engineering Mechanics, 2018, 35(7): 139-149. |
[22] | 杜长城, 祝艳波, 苗帅升, 等. 三趾马红土失水收缩裂缝演化规律研究[J]. 岩土力学, 2019, 40(8): 3019-3027. DU Changcheng, ZHU Yangbo, MIAO Shuaisheng, et al. The evolution of cracks in the dewatering shrinkage process of hipparion red soil[J]. Rock and Soil Mechanics, 2019, 40(8): 3019-3027. |
[1] | 王心泉,王智猛,牛犇,蒋恒,冯春. 8度地震烈度区新民隧道出口处边坡的稳定性[J]. 山东大学学报 (工学版), 2023, 53(3): 23-30. |
[2] | 牛犇,张新伟,周玉,李婧,徐兴全,张一鸣. 基于连续-非连续元降雨工况三维边坡稳定性分析[J]. 山东大学学报 (工学版), 2023, 53(1): 92-99. |
|