山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (6): 167-175.doi: 10.6040/j.issn.1672-3961.0.2023.235
张天旭1,3,刘延俊1,2,3*,陈云2,薛钢2,3,王一铭1,3
ZHANG Tianxu1,3, LIU Yanjun1,2,3*, CHEN Yun2, XUE Gang2,3, WANG Yiming1,3
摘要: 为解决海洋温差能发电中换热器的计算问题,基于MATLAB软件,提出一种应用于海洋温差能发电(ocean thermal energy conversion, OTEC)满液式换热器沸腾传热与凝结传热的传热计算方法,并建立海洋温差能满液式换热器数学模型。在此模型的基础上,针对表层25~30 ℃温海水、深层4~6 ℃冷海水的OTEC循环工况,分析不同循环工况下换热器传热系数的变化情况;针对进水温度、进水流量、壳程压力对换热效率的影响进行数值计算,得出OTEC循环工况下不同因素对满液式换热器传热系数的影响。研究表明,OTEC循环工况下蒸发器传热系数与温海水的进水温度、流量、壳程压力呈正相关;冷凝器传热系数与冷海水的流量呈正相关,与进水温度、壳程压力呈负相关。通过海洋温差循环试验平台进行试验,将试验结果与数学模型相对比,验证了数学模型的准确性。
中图分类号:
[1] 张继生,唐子豪,钱方舒. 海洋温差能发展现状与关键科技问题研究综述[J]. 河海大学学报(自然科学版), 2019, 47(1): 55-64. ZHANG Jisheng, TANG Zihao, QIAN Fangshu. Research review on the development status and key scientific and technological issues of ocean temperature difference energy[J]. Journal of Hohai University(Natural Science Edition), 2019, 47(1): 55-64. [2] 王项南,麻常雷. “双碳”目标下海洋可再生能源资源开发利用[J]. 华电技术, 2021, 43(11): 91-96. WANG Xiangnan, MA Changlei. Development and utilization of marine renewable energy resources under the "dual carbon" goal[J]. Huadian Technology, 2021, 43(11): 91-96. [3] 刘伟民,麻常雷,陈凤云,等. 海洋可再生能源开发利用与技术进展[J]. 海洋科学进展, 2018, 36(1): 1-18. LIU Weimin, MA Changlei, CHEN Fengyun, et al. Development and utilization of marine renewable energy and technological progress[J]. Progress in Marine Science, 2018, 36(1): 1-18. [4] ROD F, MARKHAM A C, DIAZ J E, et al. Revisiting ocean thermal energy conversion[J]. Marine Policy, 2012, 36(2): 463-465. [5] YOON Jungin, SON Changhyo, BAEK Seungmoon, et al. Performance characteristics of a high-efficiency R717 OTEC power cycle[J]. Applied Thermal Engineering, 2014, 72(2): 304-308. [6] 吴浩宇. 一种高效海洋温差能发电循环的性能分析[J]. 海洋科学进展, 2020, 38(3): 513-521. WU Haoyu. Performance analysis of an efficient ocean thermoelectric power generation cycle [J]. Progress in Marine Science, 2020, 38(3): 513-521. [7] VERA D, BACCIOLI A, JURADO F, et al. Modeling and optimization of an ocean thermal energy conversion system for remote islands electrification[J]. Renewable Energy, 2020, 162: 1399-1414. [8] SARIS E C, SCHOLTEN W B, KERNER D A, et al. Overview of international ocean energy activities[J]. Ocean Energy Recovery, 1989: 1-8. [9] 曲宏伟. CO2跨临界循环系统满液式蒸发器分析[D].天津: 天津大学, 2012. QU Hongwei. Analysis of flooded evaporator in CO2 transcritical circulation system[D]. Tianjin: Tianjin University, 2012. [10] STEPHAN K, ABDELSALAM M. Heat-transfer correlations for natural convection boiling[J]. International Journal of Heat and Mass Transfer, 1980, 23(1): 73-87. [11] COOPER M G. Saturation nucleate pool boiling: a simple correlation[J]. International Chemical Engineering Symposium Series, 1984, 11: 785-793. [12] 王永辉. 内螺纹-外凹穴强化管管内流动换热与管(束)外沸腾传热特性[D]. 大连: 大连理工大学, 2019. WANG Yonghui. Internal thread-external cavity enhanced tube flow heat transfer and tube(bundle)external boiling heat transfer characteristics[D]. Dalian: Dalian University of Technology, 2019. [13] KATARZYNA Węglarz, TALER Dawid, TALER Jan, et al. New calculation method for tube cross-flow heat exchangers[C] //E3S Web of Conferences. Paris, France: EDP Sciences, 2021. [14] DAWID Taler, TALER Jan, WRONA Katarzyna. New analytical-numerical method for modelling of tube cross-flow heat exchangers with complex flow systems[J]. Energy, 2021, 228: 120633. [15] WILHELM Nusselt. Die oberflächenkondensation des wasserdampfes[J]. Energy, 1916: 541-569. [16] 党坤儒. 水平低肋管外R1234ze(E)凝结传热数值模拟[D]. 郑州: 中原工学院, 2021. DANG Kunru. Numerical simulation of R1234ze(E)condensation heat transfer outside horizontal low-ribbed tubes[D]. Zhengzhou: Zhongyuan Institute of Technology, 2021. [17] BELGHAZI M, BONTEMPS A, SIGNE J C, et al. Condensation heat transfer of a pure fluid and binary mixture outside a bundle of smooth horizontal tubes. comparison of experimental results and a classical model[J]. International Journal of Refrigeration, 2001, 24(8): 841-855. [18] CHENG B, TAO W Q. Experimental study of R-152a film condensation on single horizontal smooth tube and enhanced tubes[J]. Journal of Heat Transfer, 1994, 116(1): 266-270. [19] MINKOWYCZ W J, SPARROW E M. Condensation heat transfer in the presence of noncondensables, interfacial resistance, superheating, variable properties, and diffusion[J]. International Journal of Heat and Mass Transfer, 1966, 9(10): 1125-1144. [20] ZHENG Xiaosheng, JI Zhang, RYHL Kærn Martin, et al. Analysis of prediction methods for non-equilibrium internal flow condensation heat transfer[J]. Applied Thermal Engineering, 2023, 239: 122063. [21] 李大树. 海洋温差能开发利用高效热交换技术[J]. 工业加热, 2019, 48(3): 1-3. LI Dashu. Development and utilization of high-efficiency heat exchange technology for ocean temperature difference energy[J]. Industrial Heating, 2019, 48(3): 1-3. [22] 翟晓宇. 海洋温差能发电系统及其换热器、引射器研究[D]. 济南: 山东大学, 2021. ZHAI Xiaoyu. Research on ocean thermoelectric power generation system and its heat exchanger and ejector[D]. Jinan: Shandong University, 2021. [23] 刘兵. 满液式蒸发器吸气带液的模型研究[D]. 上海:上海交通大学, 2010. LIU Bing. Model study on suction liquid entrainment of flooded evaporator[D]. Shanghai: Shanghai Jiao Tong University, 2010. [24] 潘丽君. 满液式蒸发器与干式蒸发器的区别[J]. 制冷, 2011, 30(3): 80-83. PAN Lijun. The difference between flooded evaporator and dry evaporator[J]. Refrigeration, 2011, 30(3): 80-83. [25] 孟凡星. 水平通道内流动沸腾及强化传热调控特性LBM模拟[D]. 大连: 大连理工大学, 2022. MENG Fanxing. LBM simulation of flow boiling and enhanced heat transfer regulation characteristics in horizontal channels[D]. Dalian: Dalian University of Technology, 2022. [26] 于凯秋. “Chen”型沸腾传热计算用于小通道传热计算的适应性[J]. 核动力工程, 2010, 31(增刊1): 24-28. YU Kaiqiu. The adaptability of “Chen” type boiling heat transfer calculation for small channel heat transfer calculations [J]. Nuclear Power Engineering, 2010, 31(Suppl.1): 24-28. [27] LIU Z, WINTERTON R H S. A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation[J]. International Journal of Heat and Mass Transfer, 1991, 34(11): 2759-2766. [28] ZHANG W, HIBIKI T, MISHIMA K. Correlation for flow boiling heat transfer in mini-channels[J]. International Journal of Heat and Mass Transfer, 2004, 47(26): 5749-5763. [29] GNIELINSKI V. New equations for heat and mass transfer in the turbulent flow in pipes and channels[J]. NASA STI/Recon Technical Report A, 1975, 41: 22-28. [30] ZDZISLAW Kowalczuk, TATARA Mareks. Improved model of isothermal and incompressible fluid flow in pipelines versus the darcy-weisbach equation and the issue of friction factor[J]. Journal of Fluid Mechanics, 2020, 891: 1-26. [31] COOPER M G. Saturation nucleate pool boiling-a simple correlation[J]. Institution of Chemical Engineers Symposium Series, 1984, 86: 785-793. [32] SIRA Saisorn, WONGWISES Somchai. Two-phase air-water flow in micro-channels: an investigation of the viscosity models for pressure drop prediction[J]. International Communications in Heat and Mass Transfer, 2010, 38(2): 212-217. [33] 杨世铭,陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006. [34] 徐莉,臧金光,曾小康,等. 超临界水通道内压降特性分析[J]. 原子能科学技术, 2014, 48(4): 642-647. XU Li, ZANG Jinguang, ZENG Xiaokang, et al. Analysis of pressure drop characteristics in supercritical water channels[J]. Atomic Energy Science and Technology, 2014, 48(4): 642-647. [35] PRODANOV E M. Mathematical analysis of the van der waals equation[J]. Physica B: Physics of Condensed Matter, 2022, 640: 414077. [36] 侯云星. 采用非共沸工质的海洋温差发电循环压力能回收系统研究[D]. 济南: 山东大学, 2019. HOU Yunxing. Research on pressure energy recovery system of ocean thermoelectric power generation cycle using non-azeotropic working fluid[D]. Jinan: Shandong University, 2019. [37] 陈凤云. 海洋温差能发电装置热力性能与综合利用研究[D]. 哈尔滨: 哈尔滨工程大学, 2016. CHEN Fengyun. Research on thermal performance and comprehensive utilization of ocean thermoelectric power generation device[D]. Harbin: Harbin Engineering University, 2016. |
[1] | 闫吉庆,王效嘉,田茂诚. 含不凝气蒸汽在锯齿形表面的凝结传热特性[J]. 山东大学学报 (工学版), 2020, 50(6): 129-134. |
[2] | 程屾, 孙奉仲*. 渗层不锈钢管束表面真空下换热特性的实验分析[J]. 山东大学学报(工学版), 2014, 44(1): 90-94. |
|