山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (3): 132-140.doi: 10.6040/j.issn.1672-3961.0.2023.058
• 电气工程 • 上一篇
张亮1,牛凯1,罗贤超2,张思遥2,裴浩威1,唐亚可1,田利2*
ZHANG Liang1, NIU Kai1, LUO Xianchao2, ZHANG Siyao2, PEI Haowei1, TANG Yake1, TIAN Li2*
摘要: 建立风速与覆冰厚度的联合概率分布模型,计算考虑不同重现期的灾害作用组合值和组合系数。基于角钢构件现象学滞回模型,开展覆冰输电塔-线体系的风致倒塌破坏研究,并考虑结构参数不确定性开展敏感性分析。结果表明,风速范围在5~10 m/s、覆冰厚度在10~20 mm时,覆冰期年极值风速和年最大覆冰厚度均符合广义极值分布(generalized extreme value, GEV)。在风、冰荷载的共同影响下,输电塔-线体系的杆件破坏集中在塔腿处,主材失效是结构倒塌的主要原因,且覆冰输电塔-线体系在敏感性分析中的屈服强度和弹性模量对结构临界倒塌风速影响最大,风攻角0°和30°的敏感性程度要大于45°和90°。
中图分类号:
[1] 李正,杨靖波,韩军科,等. 2008年输电线路冰灾倒塔原因分析[J]. 电网技术, 2009, 33(2): 31-35. LI Zheng, YANG Jingbo, HAN Junke, et al. Analysis of the causes of the ice-related tower collapse on transmission lines in 2008[J]. Power System Technology, 2009, 33(2): 31-35. [2] 刘凯铭. 大跨越输电塔-线体系脱冰和断线冲击动力响应分析[D]. 济南:山东大学, 2022. LIU Kaiming. Analysis of the dynamic response of de-icing and line breaking shocks in a large span transmission tower-line system[D]. Jinan: Shandong Univer-sity, 2022. [3] 张来仪. 考虑地形影响的台风作用下输电塔-线体系响应分析[D]. 济南:山东大学, 2022. ZHANG Laiyi. Analysis of transmission tower-line system response under typhoon effects considering topography[D]. Jinan: Shandong University, 2022. [4] 周梦瑶. 基于SMA阻尼器的大跨越输电塔-线体系风振控制研究[D]. 济南: 山东大学, 2021. ZHOU Mengyao. Research on wind vibration control of large span transmission tower-line system based on SMA dampers[D]. Jinan: Shandong University, 2021. [5] 俞琪琦. 风致大跨越输电塔-线体系倒塌破坏研究[D]. 济南: 山东大学, 2016. YU Qiqi. Research on wind-induced collapse damage of large span transmission tower-line systems [D]. Jinan: Shandong University, 2016. [6] STEWART J R. Ice as an influence on compact line phase spacing[R]. New York: Hanover Power Technologies Inc Schenectady, 1983. [7] KEYHAN H, MCCLURE G, HABASHI W G. Dynamic analysis of an overhead transmission line subject to gusty wind loading predicted by wind-conductor interaction[J]. Computers & Structures, 2013, 122: 135-144. [8] LASSE Makkonen. Modeling power line icing in freezing precipitation[J]. Atmospheric Research, 1998, 46(1): 131-142. [9] 邹红波,宋家乐,刘媛,等. 基于PSO-SVM算法的输电线路覆冰舞动预测模型[J]. 振动与冲击, 2023, 42(3):280-286. ZOU Hongbo, SONG Jiale, LIU Yuan, et al. Prediction model for transmission line ice cover dance based on PSO-SVM algorithm[J]. Journal of Vibration and Shock, 2023, 42(3): 280-286. [10] ZHOU L, YAN B, ZHANG L, et al. Study on galloping behavior of iced eight bundle conductor transmission lines[J]. Journal of Sound and Vibration, 2016, 362: 85-110. [11] 徐文军,杨洪明,赵俊华,等. 冰风暴灾害下电力断线倒塔的概率计算[J]. 电力系统自动化,2011,35(1): 13-17. XU Wenjun, YANG Hongming, ZHAO Junhua, et al. Calculation of the probability of power line breakage and tower collapse in an ice storm disaster[J].Automation of Electric Power Systems, 2011, 35(1): 13-17. [12] 杜运兴,卢心龙. 输电塔线体系风致覆冰脱落动力响应的研究[J]. 湖南大学学报(自然科学版), 2015, 42(11):88-94. DU Yunxing, LU Xinlong. Research on the dynamic response of wind-induced ice shedding in transmission tower systems[J]. Journal of Hunan University(Natural Sciences), 2015, 42(11): 88-94. [13] 付朝阳. 地震下输电塔-线体系不确定性响应与倒塌分析[D]. 济南: 山东大学, 2021. FU Zhaoyang. Uncertainty response and collapse analysis of transmission tower-line systems under earthquakes [D]. Jinan: Shandong University, 2021. [14] 张欣. 风荷载作用下大跨越输电塔-线体系的易损性分析[D]. 济南:山东大学, 2020. ZHANG Xin. Vulnerability analysis of large span transmission tower-line systems under wind loads [D]. Jinan: Shandong University, 2020. [15] 李宏男,张文圣,付兴. 基于大数据深度学习的输电塔结构抗风易损性评估[J].土木工程学报, 2022, 55(9): 54-64. LI Hongnan, ZHANG Wensheng, FU Xing. Wind vulnerability assessment of power transmission tower structures based on deep learning from big data[J]. China Civil Engineering Journal, 2022, 55(9): 54-64. [16] 徐震,张涛,葛向东,等.风荷载作用下输电塔-线体系不确定性分析[J].山东大学学报(工学版), 2021, 51(4): 99-105. XU Zhen, ZHANG Tao, GE Xiangdong, et al. Uncertainty analysis of transmission tower-line systems under wind loads[J]. Journal of Shandong University(Engineering Science), 2021, 51(4): 99-105. [17] FU Xing, LI Hongnan, LI Gang. Fragility analysis and estimation of collapse status for transmission tower subjected to wind and rain loads[J]. Structural Safety, 2016, 58: 1-10. [18] FU Zhaoyang, TIAN Li, LIU Juncai. Seismic response and collapse analysis of a transmission tower-line system considering uncertainty factors[J]. Journal of Constructional Steel Research, 2022, 189: 107094. [19] 严波,盛金马,姜克儒,等. 猫头型输电塔在覆冰与风荷载下的动力稳定[J]. 科学技术与工程,2021,21(26):11166-11175. YAN Bo, SHENG Jinma, JIANG Keru, et al. Dynamic stability of cathead Transmission Towers under ice cover and wind loads[J]. Science Technology and Engineering, 2021, 21(26): 11166-11175. [20] LIU Juncai, TIAN Li, MA Ruisheng, et al. Phenomenological hysteretic model for fixed-end steel equal-leg angle: Development and application[J]. Thin-Walled Structures, 2023, 183: 110335. [21] 蒋兴良,易辉. 输电线路覆冰及防护[M]. 北京:中国电力出版社, 2002. [22] 王建城,苏盛,盛小勇,等.输电线路多年一遇极值覆冰估计方法适用性分析[J].电网技术, 2015, 39(9): 2614-2620. WANG Jiancheng, SU Sheng, SHENG Xiaoyong, et al. Analysis of the applicability of a multi-year extreme ice estimation method for transmission lines[J]. Power System Technology, 2015, 39(9): 2614-2620. [23] 中国人民共和国住房和城乡建设部. 110 kV~750 kV架空输电线路设计规范:GB 50545—2010[S].北京:中国计划出版社, 2010. [24] 中华人民共和国建设部. 高耸结构设计规范: GB—J135—90[S]. 北京:中国建筑工业出版社, 1991. [25] 刘春城,胡晓炜,曹玲. 基于ANSYS/PDS的覆冰荷载下高压输电塔可靠度分析[J]. 黑龙江电力, 2013, 35(2): 107-110. LIU Chuncheng, HU Xiaowei, CAO Lin. ANSYS/PDS-based reliability analysis of high-voltage transmission towers under ice-cover loading[J]. Heilongjinag Electric Power, 2013, 35(2): 107-110. |
[1] | 徐震,张涛,葛向东,高峰,张来仪,张欣,田利. 风荷载作用下输电塔-线体系不确定性分析[J]. 山东大学学报 (工学版), 2021, 51(4): 99-105. |
[2] | 高阳,孙浩凯,刘日成. 基坑的双排桩支护设计及变形规律[J]. 山东大学学报 (工学版), 2019, 49(3): 86-94. |
|