山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (1): 123-130.doi: 10.6040/j.issn.1672-3961.0.2022.249
• 土木工程 • 上一篇
董伟1,2,周梦虎1*,王雪松1,薛刚1,王栋1
DONG Wei1,2, ZHOU Menghu1*, WANG Xuesong1, XUE Gang1, WANG Dong1
摘要: 为研究碳化-冻融循环作用对风积沙混凝土氯离子传输的影响,进行全风积沙混凝土经历碳化(0、14、28 d)后的冻融循环(50、100、150、200次)试验研究,根据碳化时间分为C0组、C1组、C2组。通过化学滴定法检测不同深度处混凝土中的氯离子质量分数,进而分析氯离子质量分数、分布、氯离子扩散系数以及碳化深度与时间依赖性的关系,并通过扫描电镜观察混凝土内部结构。结果表明:碳化生成的碳化产物使混凝土更加密实,能够有效抵抗氯离子的侵蚀,且碳化时间越长,抵抗氯离子侵蚀效果越明显;冻融循环增大混凝土裂缝的产生,为氯离子向内部传输提供通道;随着冻融循环次数增多,氯离子侵蚀也越严重,当冻融循环100次时,C0组氯离子侵入深度为30 mm,冻融循环150次时,所有混凝土氯离子侵入深度为30 mm;200次冻融循环条件下,C1组时间依赖性系数较C0组增加42.22%,C2组较C0组增加57.78%,较C1组增加10.94%。风积沙混凝土内部氯离子质量分数随冻融循环次数增加逐步增加,随碳化深度的增加逐步降低。
中图分类号:
[1] 王尧鸿, 楚奇, 韩青. 库布齐风积沙对各分级河砂的填充效应[J]. 建筑材料学报, 2021, 24(1): 191-198. WANG Yaohong, CHU Qi, HAN Qing. Filling effect of Kubuqi aeolian sand on different classifications of river sand[J].Journal of Building Materials, 2021, 24(1): 191-198. [2] 刘超, 林鑫, 朱超, 等. 风积沙应用于混凝土的研究进展[J]. 材料科学与工程学报, 2022, 40(4): 695-705. LIU Chao, LIN Xin, ZHU Chao, et al. Research progress on application of aeolian sand in concrete[J]. Journal of Materials Science and Engineering, 2022, 40(4): 695-705. [3] 张云清, 余红发, 孙伟, 等. 城市混凝土桥梁盐冻病害调查与研究[J]. 建筑材料学报, 2012, 15(5): 665-669. ZHANG Yunqing, YU Hongfa, SUN Wei, et al.Investigation and study of durability of bridge under salt scaling[J]. Journal of Building Materials, 2012, 15(5): 665-669. [4] 张鹏, 赵铁军, 郭平功, 等. 冻融和碳化作用对混凝土氯离子侵蚀的影响[J]. 东南大学学报(自然科学版), 2006(增刊2): 238-242. ZHANG Peng, ZHAO Tiejun, GUO Pinggong, et al. Influence of freeze-thaw cycles and carbonation action on chloride penetration into concrete[J]. Journal of Southeast University(Natural Science Edition), 2006(Suppl.2): 238-242. [5] KUOSA H, FERREIRA R M, HOLT E, et al. Effect of coupled deterioration by freeze-thaw, carbonation and chlorides on concrete service life[J]. Cement and Concrete Composites, 2014, 47: 32-40. [6] 陈妤, 刘荣桂, 蔡东升, 等. 冻融与氯盐侵蚀作用下预应力结构耐久性试验及数值模拟[J]. 建筑结构学报, 2010, 31(2): 104-110. CHEN Yu, LIU Ronggui, CAI Dongsheng, et al. Durability test and numerical analysis of prestressed structures with cyclic freeze-thaw subjoining chloride attack[J]. Journal of Building Structures, 2010, 31(2): 104-110. [7] SUN Lianfang, KAI Nianjiang, XING Jizhu, et al. An alternating experimental study on the combined effect of freeze-thaw and chloride penetration in concrete[J]. Construction and Building Materials, 2020, 252(20): 119025. [8] 李林洁, 刘清风. 冻融循环下混凝土内部结冰及氯离子传输规律的数值研究[J]. 硅酸盐学报, 2022, 50(8): 1-12. LI Linjie, LIU Qingfeng. Freezing rate and chloride transport in concrete subjected to freeze-thaw cycles: a numerical study[J]. Journal of the Chinese Ceramic Society, 2022, 50(8):1-12. [9] 姜文镪, 刘清风. 冻融循环下混凝土中氯离子传输研究进展[J]. 硅酸盐学报, 2020, 48(2): 258-272. JIANG Wenqiang, LIU Qingfeng. Chloride transport in concrete subjected to freeze-thaw cycles: a short review[J]. Journal of the Chinese Ceramic Cociety, 2020, 48(2): 258-272. [10] 洪雷, 唐晓东. 冻融循环及龄期对混凝土氯离子渗透性的影响[J]. 建筑材料学报, 2011, 14(2): 254-256. HONG Lei, TANG Xiaodong. Influnence of freezing-thawing cycles and curing age on chloride permeability of concrete[J]. Journal of Building Materials, 2011, 14(2): 254-256. [11] 徐港, 卫军. 氯盐种类及冻融对混凝土氯离子迁移的影响[J]. 建筑材料学报, 2006, 9(6): 729-734. XU Gang, WEI Jun. Effect of salt types and freeze thaw on chloride diffusion in concrete[J]. Journal of Building Materials, 2006, 9(6): 729-734. [12] LI Linjie, LIU Qingfeng, TANG Luping, et al. Chloride penetration in freeze-thaw induced cracking concrete: a numerical study[J]. Construction and Building Materials, 2021, 302(2): 124291. [13] 金南国, 徐亦斌, 付传清, 等. 荷载、碳化和氯盐侵蚀对混凝土劣化的影响[J]. 硅酸盐学报, 2015, 43(10): 1483-1491. JIN Nanguo, XU Yibin, FU Chuanqing,et al. Influence of carbonation,chloride attack and loading on concrete deterioration[J]. Journal of the Chinese Ceramic Society, 2015, 43(10): 1483-1491. [14] LI Kefei, ZHAO Fuyao, ZHANG Yiming. Influence of carbonation on the chloride ingress into concrete: Theoretical analysis and application to durability design[J]. Cement and Concrete Research, 2019, 123: 105788-105788. [15] WANG Y, NANUKUTTAN S, BAI Y. Influence of combined carbonation and chloride ingress regimes on rate of ingress and redistribution of chlorides in concretes[J]. Construction and Building Materials, 2017, 140: 173-183. [16] 金祖权, 孙伟, 李秋义. 碳化对混凝土中氯离子扩散的影响[J]. 北京科技大学学报, 2008, 30(8): 921-925. JIN Zuquan, SUN Wei, LI Qiuyi. Effect of carbonation on chloride diffusion in concrete[J]. Journal of University of Science and Technology Beijing, 2008, 30(8): 921-925. [17] 元成方, 牛荻陶, 齐广政. 碳化与盐雾共同作用下的混凝土氯离子扩散性能[J]. 江苏大学学报(自然科学版), 2013, 34(5): 605-609. YUAN Chengfang, NIU Ditao, QI Guangzheng. Diffusion of chloride ions into concrete under joint action of carbonation and salt spray[J]. Journal of Jiangsu University(Natural Science Edition), 2013, 34(5): 605-609. [18] 牛荻陶, 孙丛涛. 混凝土碳化与氯离子侵蚀共同作用研究[J]. 硅酸盐学报, 2013, 41(8): 1094-1099. NIU Ditao, SUN Congtao. Study on interaction of concrete carbonation and chloride corrosion[J]. Journal of the Chinese Ceramic Society, 2013, 41(8): 1094-1099. [19] LI Kefei, ZHANG Yiming, WANG Shengnian, et al. Correction to: impact of carbonation on the chloride diffusivity in concrete: experiment, analysis and application[J]. Materials and Structures, 2019, 52(6): 127-127. [20] 郑永来, 郑洁琼, 张梅. 碳化程度对混凝土中氯离子扩散系数的影响[J]. 同济大学学报(自然科学版), 2010, 38(3): 412-416. ZHENG Yonglai, ZHENG Jieqiong, ZHANG Mei. Experimental study on effect of concrete carbonization degrees on chloride diffusion coefficient[J]. Journal of Tongji University(Natural Sciences), 2010, 38(3): 412-416. [21] 许晨, 王传坤, 金伟良. 混凝土中氯离子侵蚀与碳化的相互影响[J]. 建筑材料学报, 2011, 14(3): 376-380. XU Chen, WANG Chuankun, JIN Weiliang. Interaction effect of chloride attack and carbonization in concrete[J]. Journal of Building Materials, 2011, 14(3): 376-380. [22] XIAO Jianzhuang, YING Jingwei, SHEN Luming. FEM simulation of chloride diffusion in modeled recycled aggregate concrete[J].Construction and Building Materials, 2012, 29(4): 12-23. [23] YING Jingwei, ZHOU Bin, XIAO Jianzhuang. Pore structure and chloride diffusivity of recycled aggregate concrete with nano-SiO2 and nano-TiO2[J]. Construction and Building Materials, 2017, 150:49-55. [24] YING Jingwei, HUANG Junzhou, XIAO Jianzhuang. Test and theoretical prediction of chloride ion diffusion in recycled fine aggregate mortar under uniaxial compression[J]. Construction and Building Materials, 2022, 321: 126384. [25] 中国建筑科学研究院. 普通混凝土配合比设计规范: JGJ 55—2011[S]. 北京: 中国建筑工业出版社, 2011. [26] 中国建筑科学研究院. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009. [27] 中交天津港湾工程研究院有限公司. 水运工程混凝土试验检测技术规范: JTS/T 236—2019[S]. 北京: 人民交通出版社,2019. [28] THOMAS M D A, BAMFORTH P B. Modelling chloride diffusion in concrete: effect of fly ash and slag[J]. Cement and Concrete Research, 1999, 29(4): 487-495. |
[1] | 王甲春1,张照华2,苏宁3. 混凝土渗透性的原位测试与评价[J]. 山东大学学报(工学版), 2013, 43(5): 74-79. |
|