山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (1): 109-122.doi: 10.6040/j.issn.1672-3961.0.2022.363
Peng WANG1(),Cheng HUANG2,Guohao ZHAO3,Feng ZHANG3,*()
摘要:
为研究单箱三室混凝土箱梁水化热温度场及应变场分布规律, 在广西来宾浇筑混凝土箱梁缩尺(1∶2)模型, 埋置148个温度传感器和20个应变传感器, 并布置气象传感器, 通过现场实测数据分析, 得到C60高强混凝土箱梁水化热温度场分布规律。单箱三室箱梁水化热共分为3个阶段: 温升阶段(0~24 h)、快速温降阶段(24~96 h)和平稳温降阶段(96~240 h)。箱梁截面平均温度需179 h才低于入模温度, 说明箱梁水化产生的热量至少需要7 d才能完全消散。全截面温度峰值为浇筑后24 h, 最高区域为梗腋位置处, 最高温度达90.2 ℃, 此时顶板最大横向温差达32.2 ℃。受分层浇筑影响, 浇筑后12 h, 边腹板最大竖向温差达40.1 ℃, 现场可观察到施工冷缝。梗腋处温度场分布复杂, 梗腋最大横向温差为22.5 ℃, 最大竖向温差为29.9 ℃, 梗腋表面横向收缩应变小于竖向。梗腋外表面温度较低且受模板约束, 应变小于梗腋内部, 有6个梗腋存在竖向开裂风险, 最大收缩拉应力为抗拉强度的1.51倍。
中图分类号:
1 | 孔祥谦. 热应力有限单元法分析[M]. 上海: 上海交通大学出版社, 1999. |
2 | 戴伟. 大跨度连续刚构桥施工阶段温度效应研究[D]. 长沙: 中南大学, 2014. |
DAI Wei. Study on the temperature effect in the construction phase of large span continuous rigid bridge[D]. Changsha: Central South University, 2014. | |
3 |
CHOI Seongcheol , CHA S W , OH B H , et al. Thermo-hygro-mechanical behavior of early-age concrete deck in composite bridge under environmental loadings: Part 1: temperature and relative humidity[J]. Materials and Structures, 2011, 44 (7): 1325- 1346.
doi: 10.1617/s11527-011-9751-8 |
4 | FLAGA K, KLEMCZAK B, JEDREZEJEWSKA A. Early-age thermal-shrinkage crack formation in bridge abutments. Experiences and modelling[C]//Fib Symposium. Tel Aviv, Israel: Agnieszka Jędrzejewska, 2013. |
5 | LEE Yun , KIM J K . Numerical analysis of the early age behavior of concrete structures with a hydration based microplane model[J]. Computers & Structures, 2009, 87 (17-18): 1085- 1101. |
6 | HUANG Yonghui , LIU Guoxing , HUANG Shiping , et al. Experimental and finite element investigations on the temperature field of a massive bridge pier caused by the hydration heat of concrete[J]. Construction and Building Materials, 2018, 192 (12): 240- 252. |
7 | KIM Jinkeun , KIM Kookhan , YANG Kyoung . Thermal analysis of hydration heat in concrete structures with pipe-cooling system[J]. Computers & Structures, 2001, 79 (2): 163- 171. |
8 | 王解军, 李辉, 卢二侠. 大体积混凝土桥墩水化热温度场的数值分析[J]. 中南林业科技大学学报, 2007, 27 (1): 124- 128. |
WANG Jiejun , LI Hui , LU Erxia . Numerical analysis of hydration heat temperature field of mass concrete pier[J]. Journal of Central South University of Forestry and Technology, 2007, 27 (1): 124- 128. | |
9 |
LI Fangyuan , SHEN Yin . Full-scale test of the hydration heat and the curing method of the wet joints of a precast segmental pier of a bridge[J]. European Journal of Environmental and Civil Engineering, 2017, 21 (3): 348- 370.
doi: 10.1080/19648189.2015.1119063 |
10 | GILLILANG J A , DILGER W H . Monitoring concrete temperature during construction of the Confederation Bridge[J]. Canadian Journal of Civil Engineering, 1997, 24 (6): 941- 950. |
11 | 陈王. 早期混凝土性态变化的试验研究与数值模拟[D]. 天津: 天津大学, 2014. |
12 | ABID S R . Three-dimensional finite element temperature gradient analysis in concrete bridge girders subjected to environmental thermal loads[J]. Cogent Engineering, 2018, 5 (1): 1- 15. |
13 | GU Bin , ZHOU Fengyi , GAO Wang , et al. Temperature gradient and its effect on long-span prestressed concrete box girder bridge[J]. Advances in Civil Engineering, 2020, 2020 (9): 1- 18. |
14 | DONG Wei , LIU Yinghua , XIANG Zhihai . A numerical method for estimating the maximal temperature gradients reached in fire-damaged concrete structures based on the parameter identification[J]. Computer Modeling in Engineering & Sciences, 2009, 46 (1): 77- 106. |
15 | TONG Yifei , GE Zhihao , ZHOU Xingchen , et al. Research on welding deformation for box girder of bridge crane based on thermal elasto-plastic theory[J]. Advances in Mechanical Engineering, 2018, 10 (5): 1- 12. |
16 | XU Hanzheng , YAN Xiaofeng . Numerical analysis of temperature influence on transverse cracks in concrete box-girder bridges[J]. Mathematical Problems in Engineering, 2020, 2020 (1): 1- 11. |
17 | LUKAS Krkoška, MORAVCIK Martin. The measurement of thermal changes on concrete box girder bridge[C]//MATEC Web of Conferences. Baghdad, Iraq: EDP Sciences, 2016. |
18 | GONG Yafeng, WANG Luning, BI Haipeng, et al. Hydration heat stress change rule in the construction of segment No. 0 of PC box girder bridge[C]//Fourth International Conference on Transportation Engineering. Chengdu, China: Southwest Jiaotong University, 2013. |
19 | XIAO Xiangnan , PENG Yunyong , LUO Guijun . Study on hydration heat of concrete channel-box girder[J]. Thermal Science, 2021, 25 (2A): 967- 975. |
20 | HOUSSEIN Nasteho A , LIU Ronggui , GU Bin , et al. Study on the hydration heat temperature field of large-scale prestressed concrete box girder[J]. IOSR Journal of Engineering, 2018, 8 (1): 19- 26. |
21 | ZHANG Ning , ZHOU Xin , LIU Yongjian , et al. In-situ test on hydration heat temperature of box girder based on array measurement[J]. China Civ Eng J, 2019, 52, 76- 86. |
22 | LIU Jiang , LIU Yongjian , ZHANG Ning , et al. Research on temperature action and cracking risk of steel-concrete composite girder during the hydration process[J]. Archives of Civil and Mechanical Engineering, 2020, 20 (2): 1- 21. |
23 | THURSTON Stuart. Thermal stresses in concrete structures[D]. Canterbury: University of Canterbury, 1978. |
24 | 侯东伟, 张君. 早龄期混凝土全变形曲线的试验测量与分析[J]. 建筑材料学报, 2010, (5): 613- 619. |
HOU Dongwei , ZHANG Jun . Experimental measure-ment and analysis of full deformation curve of early age concrete[J]. Journal of Construction Materials, 2010, (5): 613- 619. | |
25 | 中华人民共和国住房和城乡建设部. 中华人民共和国国家标准.大体积混凝土施工标准: JB50496—2018[M]. 北京: 中国计划出版社, 2018. |
26 | ALTOUBAT S A , LANGE D A . Creep, shrinkage, and cracking of restrained concrete at early age[J]. ACI Materials Journal, 2001, 98 (4): 323- 331. |
27 | 朱伯芳. 大体积混凝土温度应力与控制[M]. 北京: 中国水利水电出版社, 2012. |
28 | 王铁梦. 工程结构裂缝控制[M]. 北京: 中国建筑工业出版社, 1997. |
[1] | 郭豪彦,王振军,张海宝,史文涛,况栋梁. 多因素作用下水泥乳化沥青胶浆性能特征及机理[J]. 山东大学学报 (工学版), 2023, 53(1): 25-31. |
[2] | 魏本刚,郭若琛,黄华,王祯,刘鹏程,张钰莹,李可军,娄杰. 分体冷却变压器的有限元二维热学模型仿真与分析[J]. 山东大学学报(工学版), 2017, 47(6): 63-69. |
[3] | 高桂波1, 钱春香2, 岳钦艳3, 王勇威1, 鲁统卫1. 预填埋相变材料对混凝土水化热温升的降低效果[J]. 山东大学学报(工学版), 2011, 41(6): 91-96. |
[4] | 李守凯,张峰,李术才*,邵冬亮. 施工定位误差对竖向预应力损失的影响研究[J]. 山东大学学报(工学版), 2011, 41(3): 101-105. |
[5] | 孙国富1,2,李术才2,路为2,陈雷3. 复合胶凝材料钢管混凝土拱肋水化过程截面温度场试验及数值模拟分析[J]. 山东大学学报(工学版), 2011, 41(3): 106-111. |
[6] | 王海源1,2,章龙3,张乐文1*,张峰1. 预防连续箱梁施工裂缝的温度监测与有限元分析[J]. 山东大学学报(工学版), 2011, 41(3): 82-88. |
|