您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (1): 1-10.doi: 10.6040/j.issn.1672-3961.0.2022.390

• 机器学习与数据挖掘 •    下一篇

基于节点多阶邻居递阶关联贡献度的重要性辨识

胡钢1,2(),王乐萌1,卢志宇1,王琴1,徐翔3   

  1. 1. 安徽工业大学管理科学与工程学院, 安徽 马鞍山 243032
    2. 复杂系统多学科管理与控制安徽普通高校重点实验室, 安徽 马鞍山 243032
    3. 国防科技大学信息系统工程重点实验室, 湖南 长沙 410073
  • 收稿日期:2022-11-25 出版日期:2024-02-20 发布日期:2024-02-01
  • 作者简介:胡钢(1970—), 男, 甘肃天水人, 副教授, 硕士生导师, 博士, 主要研究方向为复杂网络建模与分析。E-mail: hug_2004@126.com
  • 基金资助:
    国家自然科学基金资助项目(62072249);国家社会科学基金资助项目(19BGL254);安徽省自然科学基金资助项目(2108085MC236);安徽省高校自然科学研究项目(KJ2021A0385);安徽普通高校重点实验室开放基金资助项目(CS2021-05)

Importance identification method based on multi-order neighborhood hierarchical association contribution of nodes

Gang HU1,2(),Lemeng WANG1,Zhiyu LU1,Qin WANG1,Xiang XU3   

  1. 1. School of Management Science and Engineering, Anhui University of Technology, Maanshan 243032, Anhui, China
    2. Key Laboratory of Multidisciplinary Management and Control of Complex Systems of Anhui Higher Education Institutes, Maanshan 243032, Anhui, China
    3. Key Laboratory of Information Systems Engineering, National University of Defense Technology, Changsha 410073, Hunan, China
  • Received:2022-11-25 Online:2024-02-20 Published:2024-02-01

摘要:

为更精细化地辨识节点重要性, 扩展节点有效信息集聚范围和类别, 对网络节点的空间位置属性信息与其直接及间接邻居节点间关联结构信息进行融合、集结, 提出复杂网络多阶邻居递阶关联贡献度的节点重要性辨识方法。依据网络节点空间位置层级差异及层间交互信息给出节点层级位置属性贡献度定义; 构建复杂网络目标节点多阶邻居递阶关联贡献度矩阵, 表征直接邻居节点、间接邻居节点与目标节点间关联度对其影响力的递阶贡献; 提出节点跨层跨级空间拓扑位置贡献度与多阶邻居递阶关联贡献度融合的节点重要性辨识方法。仿真试验表明: 在6个真实网络上所提方法有效提升节点重要性辨识的精细性和准确性。本研究通过探究网络节点间多阶递阶交互行为, 为深入探索网络背后的动态演化机理, 进而做出预测和调控提供科学的理论基础。

关键词: 复杂网络, 节点重要性辨识, 多阶邻居相似度, 多阶邻居紧密度, 多阶邻居递阶关联贡献度

Abstract:

In order to identify the node importance more finely and extend the scope and category of effective information gathering of nodes, the spatial location attribute information of network nodes and their direct and indirect neighbor nodes were fused and clustered, a node importance identification method of multi-order neighbor hierarchical association contribution of complex networks was proposed. The definition of the contribution of node level location attributes was given based on the network node spatial location hierarchical differences and inter-layer association information. A complex network target node multi-order neighbor hierarchical association contributions matrix was constructed to characterize the hierarchical contribution of the associations between direct neighbor nodes, indirect neighbor nodes and target nodes to their influence. A node importance identification method that fused node topological location contribution across layers and levels of space with multi-order neighborhood hierarchical association contribution was proposed. The simulation experiments showed that the proposed method could effectively improve the precision and accuracy of node importance identification on six real networks. This study provided a scientific theoretical basis for in-depth exploration of the dynamic evolution mechanism behind the network, and then made prediction and regulation by exploring the multi-order hierarchical interaction behaviors among the network nodes.

Key words: complex network, identification of node importance, multi-order neighbor similarity, multi-order neighbor closeness, multi-order neighbor hierarchical association contribution

中图分类号: 

  • TP391

图1

K-shell分解示意图"

图2

示例网络图"

表1

示例网络的统计特性"

n m k l c
16 58 7.250 1.454 0.527

图3

基于连边删除法的仿真试验(示例网络)"

表2

6个真实网络的结构特征"

网络名 n m k l c
High-school 70 274 10.457 1 2.664 1 0.404 3
Jazz 198 2 742 27.697 0 2.206 0 0.520 2
C-elegans(neural) 297 2 148 28.929 3 2.469 8 0.180 7
Proteins 1 706 3 233 7.276 7 5.093 1 0.005 8
Adolescent health 2 539 10 455 10.215 8 4.516 4 0.141 9
Blogs 3 982 16 716 3.426 2 2.746 7 0.225 9

表3

6个真实网络中各方法分辨率"

网络分辨率
文献[7] 文献[12] 文献[14] 文献[19] 文献[24] 文献[32] DTR方法
High-school 0.823 1 0.546 9 0.998 7 0.999 1 0.971 4 0.999 1 0.999 2
Jazz 0.965 9 0.794 4 0.996 5 0.985 7 0.919 1 0.985 7 0.999 3
C-elegans(neural) 0.921 6 0.609 4 0.866 6 0.964 6 0.997 4 0.964 6 0.997 7
Proteins 0.532 4 0.426 0 0.897 2 0.959 5 0.521 6 0.959 5 0.995 3
Adolescent health 0.867 6 0.524 5 0.779 5 0.637 1 0.964 5 0.637 1 0.999 9
Blogs 0.253 8 0.247 9 0.991 3 0.928 3 0.836 6 0.928 3 0.995 2

图4

移除连边后网络子图数目比值变化图"

图5

移除连边后网络最大子图规模变化"

1 YAO S Y , FAN N , HU J , et al. Modeling the spread of infectious diseases through influence maximization[J]. Optimization Letters, 2022, 16 (5): 1- 24.
2 YI Z N , XIN L , HUI M C , et al. Effects of social network structures and behavioral responses on the spread of infectious diseases[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 539, 122907.
doi: 10.1016/j.physa.2019.122907
3 KINNE R , CRUCITTI P , ALBERT R , et al. Modeling cascading failures in the North American power grid[J]. The European Physcial Journal B, 2005, 46, 101- 107.
doi: 10.1140/epjb/e2005-00237-9
4 陈思谕, 邹艳丽, 王瑞瑞, 等. 电网输电线路耦合强度分配策略研究[J]. 复杂系统与复杂性科学, 2018, 15 (2): 45- 53.
CHEN Siyu , ZOU Yanli , WANG Ruirui , et al. On the coupling strength distribution strategy of power transmission lines[J]. Complex Systems and Complexity Science, 2018, 15 (2): 45- 53.
5 LIU P . Information dissemination mechanism based on cloud computing cross-media public opinion network environment[J]. International Journal of Information Technologies and Systems Approach (IJITSA), 2021, 14 (2): 70- 83.
doi: 10.4018/IJITSA.2021070105
6 YANG L , LI Z W , ALESSANDRO G , et al. Containment of rumor spread in complex social networks[J]. Information Sciences, 2020, 506, 113- 130.
doi: 10.1016/j.ins.2019.07.055
7 ALBERT R , JEONG H , ALBERT-LASZLO B . The diameter of the world wide web[J]. Nature, 1999, 401 (6): 130- 131.
8 FREEMAN L C . Aset of measures of centrality based on betweenness[J]. Sociometry, 1977, 40 (1): 35- 41.
doi: 10.2307/3033543
9 BORGATTI S P , EVERETT M G . A graph-theoretic perspective on centrality[J]. Social Networks, 2006, 28 (4): 466- 484.
doi: 10.1016/j.socnet.2005.11.005
10 PHILLIP B . Factoring and weighting approaches to status scores and clique identification[J]. Journal of Mathematical Sociology, 1972, 2 (1): 113- 120.
doi: 10.1080/0022250X.1972.9989806
11 KATZ L . A new status index derived from sociometric analysis[J]. Psychometrika, 1953, 18, 39- 43.
doi: 10.1007/BF02289026
12 KITSAK M , GALLOS L , HAVLIN S , et al. Identification of influential spreaders in complex networks[J]. Nature Physics, 2010, 6 (11): 888- 893.
doi: 10.1038/nphys1746
13 ZENG A , ZHANG C J . Ranking spreaders by decomposing complex networks[J]. Physics Letters A, 2013, 377 (14): 1031- 1035.
doi: 10.1016/j.physleta.2013.02.039
14 谢丽霞, 孙红红, 杨宏宇, 等. 基于K-shell的复杂网络关键节点识别方法[J]. 清华大学学报(自然科学版), 2022, 62 (5): 849- 861.
XIE Lixia , SUN Honghong , YANG Hongyu , et al. Key node recognition in complex networks based on the K-shell method[J]. Journal of Tsinghua University (Science and Technology), 2022, 62 (5): 849- 861.
15 WANG M , LI W C , GUO Y N , et al. Identifying influential spreaders in complex networks based on improved K-shell method[J]. Physica A: Statistical Mechanics and its Applications, 2020, 554, 124229.
doi: 10.1016/j.physa.2020.124229
16 ULLAH A , WANG B , SHENG J F , et al. Identification of nodes influence based on global structure model in complex networks[J]. Scientific Reports, 2021, 11 (1): 6173- 6173.
doi: 10.1038/s41598-021-84684-x
17 汪亭亭, 梁宗文, 张若曦. 基于信息熵与迭代因子的复杂网络节点重要性评价方法[J]. 物理学报, 2023, 72 (4): 337- 347.
WANG Tingting , LIANG Zongwen , ZHANG Ruoxi . Importance evaluation method of complex network nodes based on information entropy and iteration factor[J]. Acta Physica Sinica, 2023, 72 (4): 337- 347.
18 尹荣荣, 尹学良, 崔梦頔, 等. 基于重要度贡献的无标度网络节点评估方法[J]. 软件学报, 2019, 30 (6): 1875- 1885.
YIN Rongrong , YIN Xueliang , CUI Mengdi , et al. Node evaluation method based on importance contribution in scale-free networks[J]. Journal of Software, 2019, 30 (6): 1875- 1885.
19 CHEN D B , LV L Y , SHANG M S , et al. Identifying influential nodes in complex networks[J]. Fuel and Energy Abstracts, 2012, 391 (4): 1777- 1787.
20 阮逸润, 老松杨, 王竣德, 等. 基于领域相似度的复杂网络节点重要度评估算法[J]. 物理学报, 2017, 66 (3): 038902.
RUAN Yirun , LAO Songyang , WANG Junde , et al. Node importance measurement based on neighborhood similarity in complex network[J]. Acta Physica Sinica, 2017, 66 (3): 038902.
21 马媛媛, 韩华, 瞿倩倩. 基于节点亲密度的重要性评估算法[J]. 计算机科学, 2021, 48 (5): 140- 146.
MA Yuanyuan , HAN Hua , QU Qianqian . Importance evaluation algorithm based on node intimate degree[J]. Computer Science, 2021, 48 (5): 140- 146.
22 ZHONG S , ZHANG H T , DENG Y , et al. Identification of influential nodes in complex networks: a local degree dimension approach[J]. Information Sciences, 2022, 610, 994- 1009.
doi: 10.1016/j.ins.2022.07.172
23 熊才权, 古小惠, 吴歆韵. 基于K-shell位置和两阶邻居的复杂网络节点重要性评估方法[J]. 计算机应用研究, 2023, 40 (3): 738- 742.
XIONG Caiquan , GU Xiaohui , WU Xinyun . Evaluation method of node importance in complex networks based on K-shell position and neighborhood with in two steps[J]. Application Research of Computers, 2023, 40 (3): 738- 742.
24 胡钢, 高浩, 徐翔, 等. 基于重要度传输矩阵的复杂网络节点重要性辨识方法[J]. 电子学报, 2020, 48 (12): 2402- 2408.
HU Gang , GAO Hao , XU Xiang , et al. Importance identification method of complex network nodes based on importance transfer matrix[J]. Acta Electronica Sinica, 2020, 48 (12): 2402- 2408.
25 胡钢, 牛琼, 王琴, 等. 时序多层网络熵值结构洞节点重要性建模[J]. 浙江大学学报(工学版), 2023, 57 (4): 719- 725.
HU Gang , NIU Qiong , WANG Qin , et al. Modeling of node importance in entropy-value structured hole of temporal multilayer network[J]. Journal of Zhejiang University (Engineering Science), 2023, 57 (4): 719- 725.
26 JIANG S Y , ZHOU J , MICHAEL S , et al. Searching for key cycles in a complex network[J]. Physical Review Letters, 2023, 130, 187402.
doi: 10.1103/PhysRevLett.130.187402
27 来逢波, 许冰, 续颖, 等. 高铁复杂网络拓扑特征及节点中心性研究[J]. 山东大学学报(工学版), 2022, 52 (6): 14- 22.
LAI Fengbo , XU Bing , XU Ying , et al. Study on topological characteristics and node centrality of high-speed railway complex network[J]. Journal of Shandong University (Engineering Science), 2022, 52 (6): 14- 22.
28 WANG F F , SUN Z J , GAN Q , et al. Influential node identification by aggregating local structure information[J]. Physica A: Statistical Mechanics and its Applications, 2022, 593, 126885.
doi: 10.1016/j.physa.2022.126885
29 QIU L Q , ZHANG J Y , TIAN X B , et al. Ranking influential nodes in complex networks based on local and global structures[J]. Applied Intelligence, 2021, 51 (7): 1- 14.
30 郭茂林, 包崇明, 周丽华, 等. 基于TOPSIS的异质网络影响力最大化[J]. 山东大学学报(工学版), 2022, 52 (2): 31- 40.
GUO Maolin , BAO Chongming , ZHOU Lihua , et al. Influence maximization of heterogeneous networks based on TOPSIS[J]. Journal of Shandong University (Engineering Science), 2022, 52 (2): 31- 40.
31 BAE J , KIM S . Identifying and ranking influential spreaders in complex networks by neighborhood coreness[J]. Physica A: Statistical Mechanics &. Its Applications, 2014, 395 (4): 549- 559.
32 任卓明, 邵凤, 刘建国, 等. 基于度与集聚系数的网络节点重要性度量方法研究[J]. 物理学报, 2013, 62 (12): 128901.
doi: 10.7498/aps.62.128901
REN Zhuoming , SHAO Feng , LIU Jianguo , et al. Node importance measurement based on the degree and clustering coefficient information[J]. Acta Physica Sinica, 2013, 62 (12): 128901.
doi: 10.7498/aps.62.128901
[1] 来逢波,许冰,续颖,张蕾,孙义荣. 高铁复杂网络拓扑特征及节点中心性研究[J]. 山东大学学报 (工学版), 2022, 52(6): 14-22.
[2] 赵康,田浩,马欢,杨冬. 基于复杂网络理论的多直流馈入受端电网优化分区方法[J]. 山东大学学报 (工学版), 2022, 52(1): 128-134.
[3] 林晓炜,陈黎飞. 结构扩展的非负矩阵分解社区发现算法[J]. 山东大学学报 (工学版), 2021, 51(2): 57-64.
[4] 黄成凯,杨浩,姜斌,程舒瑶. 一类复杂网络的协同容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 203-209.
[5] 张玉婷,李望,王晨光,刘友权,侍红军. 不连续耦合的时滞复杂动态网络的同步[J]. 山东大学学报(工学版), 2017, 47(4): 43-49.
[6] 郝崇清,王志宏. 基于复杂网络的癫痫脑电分类与分析[J]. 山东大学学报(工学版), 2017, 47(3): 8-15.
[7] 李望,马志才,侍红军. 时滞复杂动态网络的有限时间随机广义外部同步[J]. 山东大学学报(工学版), 2017, 47(3): 1-8.
[8] 褚晓东,张荣祥,黄昊怡,唐茂森. 全球能源互联网物理-信息系统协同仿真平台[J]. 山东大学学报(工学版), 2016, 46(4): 103-110.
[9] 李望1,2,石咏2,马继伟2. 复杂动力学网络的有限时间外部同步[J]. 山东大学学报(工学版), 2013, 43(2): 48-53.
[10] 赵永清, 江明辉. 混合变时滞二重边复杂网络自适应同步反馈控制[J]. 山东大学学报(工学版), 2010, 40(3): 61-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[2] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[3] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[4] 施来顺,万忠义 . 新型甜菜碱型沥青乳化剂的合成与性能测试[J]. 山东大学学报(工学版), 2008, 38(4): 112 -115 .
[5] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[6] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[7] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[8] 李梁,罗奇鸣,陈恩红. 对象级搜索中基于图的对象排序模型(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 15 -21 .
[9] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[10] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .