您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (3): 128-137.doi: 10.6040/j.issn.1672-3961.0.2022.362

• 化学与环境 • 上一篇    下一篇

中度镉污染农田安全利用技术模式

吕城1(),刘倩2,王坤3,黄现民2,于小晶1,戴九兰1,*()   

  1. 1. 山东大学环境研究院,山东 青岛 266237
    2. 山东省农业生态与资源保护总站,山东 济南 250100
    3. 淄博市数字农业农村发展中心,山东 淄博 255200
  • 收稿日期:2022-10-31 出版日期:2023-06-20 发布日期:2023-07-07
  • 通讯作者: 戴九兰 E-mail:lvcheng@mail.sdu.edu.cn;daijiulan@sdu.edu.cn
  • 作者简介:吕城(1996—),男,浙江金华人,硕士研究生,主要研究方向为土壤污染与农产品安全。E-mail:lvcheng@mail.sdu.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(41977144);山东省农业重大技术协同推广计划(SDNYXTTG-2022-22)

The technology model of safe utilization of moderately cadmium-contaminated farmland

Cheng LÜ1(),Qian LIU2,Kun WANG3,Xianmin HUANG2,Xiaojing YU1,Jiulan DAI1,*()   

  1. 1. Environment Research Institute, Shandong University, Qingdao 266237, Shandong, China
    2. Rural Energy and Environment Agency, Ministry of Shandong, Jinan 250100, Shandong, China
    3. Digital Agriculture and Rural Development Center of Zibo, Zibo 255200, Shandong, China
  • Received:2022-10-31 Online:2023-06-20 Published:2023-07-07
  • Contact: Jiulan DAI E-mail:lvcheng@mail.sdu.edu.cn;daijiulan@sdu.edu.cn

摘要:

为提出一个经济有效的镉污染农田安全利用技术模式,通过大田试验,比较土壤单独施用复合菌渣、叶面单独喷施糖醇锌和两者联用处理,对低镉积累小麦品种济麦22和高镉积累小麦品种周麦32收获期土壤pH及有效态镉质量分数、产量及其构成因素、籽粒镉质量分数的影响以及风险效益分析。结果表明:单独施用复合菌渣或与喷施糖醇锌联用处理使两个小麦品种土壤pH显著提高0.61~0.69,土壤有效态镉质量分数显著降低40%~62%;联用处理使两个小麦品种的穗粒数、千粒重和产量分别显著提高16%~19%、5%、23%~26%;3种处理措施使两个小麦品种籽粒镉质量分数显著降低46%~76%,且联用效果优于单一处理,尤其使济麦22农产品质量达到合格,且增加了经济效益。研究表明,土壤施用复合菌渣-叶面喷施糖醇锌-济麦22是一种可行的技术模式,为实现中度镉污染农田安全利用和农产品质量安全提供了技术支撑。

关键词: 镉污染农田, 低镉积累小麦, 复合菌渣, 糖醇锌, 安全利用

Abstract:

A field experiment was conducted to propose a cost-effective technology model for the safe utilization of cadmium-contaminated farmland. The effects of soil application of composite spent mushroom substrate (CSMS) alone or foliar application of zinc sugar alcohol (Zn-SA) alone or both in combination on soil pH and available cadmium, yield and its components, grain cadmium content, as well as risk-benefit analysis during harvest time of Jimai 22 (low cadmium accumulation cultivar) and Zhoumai 32 (high cadmium accumulation cultivar) were compared. The results showed that for both wheat cultivars, soil application of CSMS treatment or combined treatment significantly increased the soil pH by 0.61-0.69 and significantly reduced the soil available cadmium content by 40%-62%; combined treatment significantly increased seeds per spike, 1000-grain weight, and grain yield by 16%-19%, 5%, 23%-26%, respectively; three treatments significantly reduced the grain cadmium content by 46%-76%, and the combined effect was better than that of the single treatment, especially qualifying the quality of the agricultural product of Jimai 22, and increasing the economic benefits. The study showed that soil application of CSMS+foliar application of Zn-SA+Jimai 22 was a feasible technology model, which provided technical support for achieving safe utilization of moderately cadmium-contaminated farmland and quality safety of agricultural products.

Key words: cadmium-contaminated farmland, low cadmium accumulation wheat, composite spent mushroom substrate, zinc sugar alcohol, safe utilization

中图分类号: 

  • X53

表1

试验地土壤基本化学性质($N = 32, \bar x \pm s$)"

pH 电导率/(μs·cm-1) 有机质质量分数/(g·kg-1) 碱解氮质量分数/(mg·kg-1) 有效磷质量分数/(mg·kg-1) 速效钾质量分数/(mg·kg-1) 有效态镉质量分数/(mg·kg-1) 总镉质量分数/(mg·kg-1)
7.53±0.15 54.5±8.9 38.51±3.82 102.07±7.29 38.98±12.87 110.07±7.50 1.11±0.40 2.01±0.73

图1

不同处理方式对济麦22和周麦32两个小麦品种土壤pH的影响 注:1.图中误差棒表示4次重复的标准差,下同; 2.根据配对样本t检验,含有相同小写字母表示小麦收获期与处理前同一处理的土壤pH间差异不显著(p>0.05)。"

图2

不同处理方式对济麦22和周麦32两个小麦品种土壤有效态镉质量分数的影响 注:根据配对样本t检验,图中含有相同小写字母表示小麦收获期与处理前同一处理的土壤有效态镉质量分数间差异不显著(p>0.05)。"

图3

不同处理方式对济麦22和周麦32产量及其构成因素的影响 注:根据单因素方差分析和Duncan法多重比较,图中含有相同小写字母表示不同处理间差异不显著(p>0.05),下同。"

图4

不同处理对济麦22和周麦32籽粒镉质量分数的影响"

图5

济麦22小麦品种和土壤相关指标的主成分分析和相关性分析 注:1.图(b)中红色表示正相关,蓝色表示负相关,下同;颜色越深,相关性越强,反之亦然,下同;框中数字表示相关系数,下同。2.圆的大小表示相关程度;圆越大,相关性越强。"

图6

周麦32小麦品种和土壤相关指标的主成分分析和相关性分析 注:图(b)中椭圆的圆度表示相关程度;圆度越大,相关性越强。"

1 SATARUG S , GARRETT S H , SENS M A , et al. Cadmium, environmental exposure, and health outcomes[J]. Environmental Health Perspectives, 2010, 118 (2): 182- 190.
doi: 10.1289/ehp.0901234
2 中华人民共和国生态环境部, 中华人民共和国国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准(试行): GB 15618—2018[S]. 北京: 中国环境出版集团, 2018.
3 中华人民共和国环境保护部, 中华人民共和国国土资源部. 全国土壤污染状况调查公报[EB/OL]. (2014-04-17)[2022-10-20]. https://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm.
4 MA J F , SHEN R F , SHAO J F . Transport of cadmium from soil to grain in cereal crops: a review[J]. Pedosphere, 2021, 31 (1): 3- 10.
doi: 10.1016/S1002-0160(20)60015-7
5 ABEDI T , MOJIRI A . Cadmium uptake by wheat (Triticum aestivum L. ): an overview[J]. Plants, 2020, 9 (4): 500.
doi: 10.3390/plants9040500
6 国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准食品中污染物限量: GB 2762—2017[S]. 北京: 中国标准出版社, 2017.
7 刘娜, 张少斌, 郭欣宇, 等. 小麦籽粒镉含量影响因素Meta分析和决策树分析[J/OL]. 环境科学, (2022-07-29)[2022-10-20]. https://doi.org/10.13227/j.hjkx.202204090.
8 RIZWAN M , ALI S , ABBAS T , et al. Cadmium minimization in wheat: a critical review[J]. Ecotoxicology and Environmental Safety, 2016, 130, 43- 53.
doi: 10.1016/j.ecoenv.2016.04.001
9 李小方. 重金属污染农田安全利用: 目标、可选技术与可推广技术[J]. 中国生态农业学报(中英文), 2020, 28 (6): 860- 866.
LI Xiaofang . Safe utilization of heavy metal-contaminated farmland: goals, technical options, and extendable technology[J]. Chinese Journal of Eco-Agriculture, 2020, 28 (6): 860- 866.
10 WANG L , ZHANG Q , LIAO X , et al. Phytoexclusion of heavy metals using low heavy metal accumulating cultivars: a green technology[J]. Journal of Hazardous Materials, 2021, 413, 125427.
doi: 10.1016/j.jhazmat.2021.125427
11 YANG S , WU P , JEYAKUMAR P , et al. Technical solutions for minimizing wheat grain cadmium: a field study in North China[J]. Science of the Total Environment, 2022, 818, 151791.
doi: 10.1016/j.scitotenv.2021.151791
12 WANG Y , XING W , LIANG X , et al. Effects of exogenous additives on wheat Cd accumulation, soil Cd availability and physicochemical properties in Cd-contaminated agricultural soils: a meta-analysis[J]. Science of the Total Environment, 2022, 808, 152090.
doi: 10.1016/j.scitotenv.2021.152090
13 XU D , FU R , WANG J , et al. Chemical stabilization remediation for heavy metals in contaminated soils on the latest decade: available stabilizing materials and associated evaluation methods: a critical review[J]. Journal of Cleaner Production, 2021, 321, 128730.
doi: 10.1016/j.jclepro.2021.128730
14 HAMID Y , TANG L , HUSSAIN B , et al. Organic soil additives for the remediation of cadmium contaminated soils and their impact on the soil-plant system: a review[J]. Science of the Total Environment, 2020, 707, 136121.
doi: 10.1016/j.scitotenv.2019.136121
15 郭远, 宋爽, 高琪, 等. 食用菌菌渣资源化利用进展[J]. 食用菌学报, 2022, 29 (2): 103- 114.
doi: 10.16488/j.cnki.1005-9873.2022.02.012
GUO Yuan , SONG Shuang , GAO Qi , et al. Progress in utilization of spent mushroom substrate[J]. Acta Edulis Fungi, 2022, 29 (2): 103- 114.
doi: 10.16488/j.cnki.1005-9873.2022.02.012
16 LI R , ZHANG X , WANG G , et al. Remediation of cadmium contaminated soil by composite spent mushroom substrate organic amendment under high nitrogen level[J]. Journal of Hazardous Materials, 2022, 430, 128345.
doi: 10.1016/j.jhazmat.2022.128345
17 WEI Y , JIN Z , ZHANG M , et al. Impact of spent mushroom substrate on Cd immobilization and soil property[J]. Environmental Science and Pollution Research, 2020, 27 (3): 3007- 3022.
doi: 10.1007/s11356-019-07138-y
18 LEONG Y K , MA T , CHANG J , et al. Recent advances and future directions on the valorization of spent mushroom substrate (SMS): a review[J]. Bioresource Technology, 2022, 344, 126157.
doi: 10.1016/j.biortech.2021.126157
19 JIN Z , ZHANG M , LI R , et al. Spent mushroom substrate combined with alkaline amendment passivates cadmium and improves soil property[J]. Environmental Science and Pollution Research, 2020, 27 (14): 16317- 16325.
doi: 10.1007/s11356-020-08099-3
20 SARWAR N , MALHI S S , ZIA M H , et al. Role of mineral nutrition in minimizing cadmium accumulation by plants[J]. Journal of the Science of Food and Agriculture, 2010, 90 (6): 925- 937.
doi: 10.1002/jsfa.3916
21 HUSSAIN A , RIZWAN M , ALI S , et al. Combined use of different nanoparticles effectively decreased cadmium (Cd) concentration in grains of wheat grown in a field contaminated with Cd[J]. Ecotoxicology and Environmental Safety, 2021, 215, 112139.
doi: 10.1016/j.ecoenv.2021.112139
22 XIA S , WANG J , CHEN Z , et al. Foliar application of several reagents reduces Cd concentration in wheat grains[J]. Environmental Science and Pollution Research, 2022, 29 (12): 17150- 17161.
doi: 10.1007/s11356-021-17003-6
23 YOUNAS N, FATIMA I, AHMAD I A, et al. Alleviation of zinc deficiency in plants and humans through an effective technique; biofortification: a detailed review[J/OL]. Acta Ecologica Sinica. (2022-07-23)[2022-10-20]. https://doi.org/10.1016/j.chnaes.2022.07.008.
24 CAKMAK I , KUTMAN U B . Agronomic biofortifi-cation of cereals with zinc: a review[J]. European Journal of Soil Science, 2018, 69 (1): 172- 180.
doi: 10.1111/ejss.12437
25 LIU N , HUANG X , SUN L , et al. Screening stably low cadmium and moderately high micronutrients wheat cultivars under three different agricultural environments of China[J]. Chemosphere, 2020, 241, 125065.
doi: 10.1016/j.chemosphere.2019.125065
26 中华人民共和国生态环境部. 土壤pH值的测定电位法: HJ 962—2018[S]. 北京: 中国环境出版集团, 2018.
27 中华人民共和国环境保护部. 土壤电导率的测定电极法: HJ 802—2016[S]. 北京: 中国环境科学出版社, 2016.
28 中华人民共和国农业部. 土壤检测第6部分: 土壤有机质的测定: NY/T 1121.6—2006[S]. 北京: 中国农业出版社, 2006.
29 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 150- 152.
30 中华人民共和国环境保护部. 土壤有效磷的测定碳酸氢钠浸提-钼锑抗分光光度法: HJ 704—2014[S]. 北京: 中国环境科学出版社, 2014.
31 中华人民共和国农业部. 土壤速效钾和缓效钾含量的测定: NY/T 889—2004[S]. 北京: 中国农业出版社, 2004.
32 国家质量监督检验检疫总局, 国家标准化管理委员会. 土壤质量有效态铅和镉的测定原子吸收法: GB/T 23739—2009[S]. 北京: 中国标准出版社, 2009.
33 国家卫生和计划生育委员会. 食品安全国家标准食品中镉的测定: GB 5009.15—2014[S]. 北京: 中国标准出版社, 2014.
34 SHAHID M , DUMAT C , KHALID S , et al. Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system[J]. Reviews of Environmental Contamination and Toxicology, 2017, 241, 73- 137.
35 KIRKHAM M B . Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments[J]. Geoderma, 2006, 137 (1/2): 19- 32.
36 LINDSAY W L , NORVELL W A . Development of a DTPA soil test for zinc, iron, manganese, and copper[J]. Soil Science Society of America Journal, 1978, 42 (3): 421- 428.
doi: 10.2136/sssaj1978.03615995004200030009x
37 SHI R , HONG Z , LI J , et al. Mechanisms for increasing the pH buffering capacity of an acidic ultisol by crop residue-derived biochars[J]. Journal of Agricultural and Food Chemistry, 2017, 65 (37): 8111- 8119.
doi: 10.1021/acs.jafc.7b02266
38 XIAN X F , SHOKOHIFARD G I . Effect of pH on chemical forms and plant availability of cadmium, zinc, and lead in polluted soils[J]. Water Air and Soil Pollution, 1989, 45 (3/4): 265- 273.
39 BARROW N J . Reaction of anions and cations with variable-charge soils[J]. Advances in Agronomy, 1985, 38, 183- 230.
40 SHAHEEN S M , TSADILAS C D , RINKLEBE J . A review of the distribution coefficients of trace elements in soils: influence of sorption system, element characteristics, and soil colloidal properties[J]. Advances in Colloid and Interface Science, 2013, 201
41 FRUTOS I , GARCÍA-DELGADO C , GÁRATE A , et al. Biosorption of heavy metals by organic carbon from spent mushroom substrates and their raw materials[J]. International Journal of Environmental Science and Technology, 2016, 13 (11): 2713- 2720.
doi: 10.1007/s13762-016-1100-6
42 TAY C C , LIEW H H , YIN C , et al. Biosorption of cadmium ions using Pleurotus ostreatus: growth kinetics, isotherm study and biosorption mechanism[J]. Korean Journal of Chemical Engineering, 2011, 28 (3): 825- 830.
doi: 10.1007/s11814-010-0435-9
43 CHEN L , ZHOU W , LUO L , et al. Short-term resp-onses of soil nutrients, heavy metals and microbial community to partial substitution of chemical fertilizer with spent mushroom substrates (SMS)[J]. Science of The Total Environment, 2022, 844, 157064.
doi: 10.1016/j.scitotenv.2022.157064
44 ZHOU J , ZHANG C , DU B , et al. Effects of zinc application on cadmium (Cd) accumulation and plant growth through modulation of the antioxidant system and translocation of Cd in low- and high-Cd wheat cultivars[J]. Environmental Pollution, 2020, 265, 115045.
doi: 10.1016/j.envpol.2020.115045
45 曹玉巧, 聂庆凯, 高云, 等. 植物中镉及其螯合物相关转运蛋白研究进展[J]. 作物杂志, 2018, (3): 15- 24.
CAO Yuqiao , NIE Qingkai , GAO Yun , et al. The studies on cadmium and its chelate related transporters in plants[J]. Crops, 2018, (3): 15- 24.
46 ZHOU Z , ZHANG B , LIU H , et al. Zinc effects on cadmium toxicity in two wheat varieties (Triticum aestivum L.) differing in grain cadmium accumulation[J]. Ecotoxicology and Environmental Safety, 2019, 183, 109562.
doi: 10.1016/j.ecoenv.2019.109562
47 CHEN F , BASHIR A , ZIA UR REHMAN M , et al. Combined effects of green manure and zinc oxide nanoparticles on cadmium uptake by wheat (Triticum aestivum L.)[J]. Chemosphere, 2022, 298, 134348.
doi: 10.1016/j.chemosphere.2022.134348
48 RIZWAN M , ALI S , HUSSAIN A , et al. Effect of zinc-lysine on growth, yield and cadmium uptake in wheat (Triticum aestivum L.) and health risk assessment[J]. Chemosphere, 2017, 187, 35- 42.
49 LU T , WANG W , LIU L , et al. Remediation of cadmium-polluted weakly alkaline dryland soils using iron and manganese oxides for immobilized wheat uptake[J]. Journal of Cleaner Production, 2022, 365, 132794.
50 LI J , DAI J , LIU G , et al. Biochar from microwave pyrolysis of biomass: a review[J]. Biomass and Bioenergy, 2016, 94, 228- 244.
51 LUO F , YANG D , CHEN Z , et al. One-step green synthesis of bimetallic Fe/Pd nanoparticles used to degrade orange Ⅱ[J]. Journal of Hazardous Materials, 2016, 303, 145- 153.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[2] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[3] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[4] 施来顺,万忠义 . 新型甜菜碱型沥青乳化剂的合成与性能测试[J]. 山东大学学报(工学版), 2008, 38(4): 112 -115 .
[5] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[6] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[7] 李梁,罗奇鸣,陈恩红. 对象级搜索中基于图的对象排序模型(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 15 -21 .
[8] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[9] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .
[10] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .