山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (3): 128-137.doi: 10.6040/j.issn.1672-3961.0.2022.362
吕城1(),刘倩2,王坤3,黄现民2,于小晶1,戴九兰1,*()
Cheng LÜ1(),Qian LIU2,Kun WANG3,Xianmin HUANG2,Xiaojing YU1,Jiulan DAI1,*()
摘要:
为提出一个经济有效的镉污染农田安全利用技术模式,通过大田试验,比较土壤单独施用复合菌渣、叶面单独喷施糖醇锌和两者联用处理,对低镉积累小麦品种济麦22和高镉积累小麦品种周麦32收获期土壤pH及有效态镉质量分数、产量及其构成因素、籽粒镉质量分数的影响以及风险效益分析。结果表明:单独施用复合菌渣或与喷施糖醇锌联用处理使两个小麦品种土壤pH显著提高0.61~0.69,土壤有效态镉质量分数显著降低40%~62%;联用处理使两个小麦品种的穗粒数、千粒重和产量分别显著提高16%~19%、5%、23%~26%;3种处理措施使两个小麦品种籽粒镉质量分数显著降低46%~76%,且联用效果优于单一处理,尤其使济麦22农产品质量达到合格,且增加了经济效益。研究表明,土壤施用复合菌渣-叶面喷施糖醇锌-济麦22是一种可行的技术模式,为实现中度镉污染农田安全利用和农产品质量安全提供了技术支撑。
中图分类号:
1 |
SATARUG S , GARRETT S H , SENS M A , et al. Cadmium, environmental exposure, and health outcomes[J]. Environmental Health Perspectives, 2010, 118 (2): 182- 190.
doi: 10.1289/ehp.0901234 |
2 | 中华人民共和国生态环境部, 中华人民共和国国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准(试行): GB 15618—2018[S]. 北京: 中国环境出版集团, 2018. |
3 | 中华人民共和国环境保护部, 中华人民共和国国土资源部. 全国土壤污染状况调查公报[EB/OL]. (2014-04-17)[2022-10-20]. https://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm. |
4 |
MA J F , SHEN R F , SHAO J F . Transport of cadmium from soil to grain in cereal crops: a review[J]. Pedosphere, 2021, 31 (1): 3- 10.
doi: 10.1016/S1002-0160(20)60015-7 |
5 |
ABEDI T , MOJIRI A . Cadmium uptake by wheat (Triticum aestivum L. ): an overview[J]. Plants, 2020, 9 (4): 500.
doi: 10.3390/plants9040500 |
6 | 国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准食品中污染物限量: GB 2762—2017[S]. 北京: 中国标准出版社, 2017. |
7 | 刘娜, 张少斌, 郭欣宇, 等. 小麦籽粒镉含量影响因素Meta分析和决策树分析[J/OL]. 环境科学, (2022-07-29)[2022-10-20]. https://doi.org/10.13227/j.hjkx.202204090. |
8 |
RIZWAN M , ALI S , ABBAS T , et al. Cadmium minimization in wheat: a critical review[J]. Ecotoxicology and Environmental Safety, 2016, 130, 43- 53.
doi: 10.1016/j.ecoenv.2016.04.001 |
9 | 李小方. 重金属污染农田安全利用: 目标、可选技术与可推广技术[J]. 中国生态农业学报(中英文), 2020, 28 (6): 860- 866. |
LI Xiaofang . Safe utilization of heavy metal-contaminated farmland: goals, technical options, and extendable technology[J]. Chinese Journal of Eco-Agriculture, 2020, 28 (6): 860- 866. | |
10 |
WANG L , ZHANG Q , LIAO X , et al. Phytoexclusion of heavy metals using low heavy metal accumulating cultivars: a green technology[J]. Journal of Hazardous Materials, 2021, 413, 125427.
doi: 10.1016/j.jhazmat.2021.125427 |
11 |
YANG S , WU P , JEYAKUMAR P , et al. Technical solutions for minimizing wheat grain cadmium: a field study in North China[J]. Science of the Total Environment, 2022, 818, 151791.
doi: 10.1016/j.scitotenv.2021.151791 |
12 |
WANG Y , XING W , LIANG X , et al. Effects of exogenous additives on wheat Cd accumulation, soil Cd availability and physicochemical properties in Cd-contaminated agricultural soils: a meta-analysis[J]. Science of the Total Environment, 2022, 808, 152090.
doi: 10.1016/j.scitotenv.2021.152090 |
13 |
XU D , FU R , WANG J , et al. Chemical stabilization remediation for heavy metals in contaminated soils on the latest decade: available stabilizing materials and associated evaluation methods: a critical review[J]. Journal of Cleaner Production, 2021, 321, 128730.
doi: 10.1016/j.jclepro.2021.128730 |
14 |
HAMID Y , TANG L , HUSSAIN B , et al. Organic soil additives for the remediation of cadmium contaminated soils and their impact on the soil-plant system: a review[J]. Science of the Total Environment, 2020, 707, 136121.
doi: 10.1016/j.scitotenv.2019.136121 |
15 |
郭远, 宋爽, 高琪, 等. 食用菌菌渣资源化利用进展[J]. 食用菌学报, 2022, 29 (2): 103- 114.
doi: 10.16488/j.cnki.1005-9873.2022.02.012 |
GUO Yuan , SONG Shuang , GAO Qi , et al. Progress in utilization of spent mushroom substrate[J]. Acta Edulis Fungi, 2022, 29 (2): 103- 114.
doi: 10.16488/j.cnki.1005-9873.2022.02.012 |
|
16 |
LI R , ZHANG X , WANG G , et al. Remediation of cadmium contaminated soil by composite spent mushroom substrate organic amendment under high nitrogen level[J]. Journal of Hazardous Materials, 2022, 430, 128345.
doi: 10.1016/j.jhazmat.2022.128345 |
17 |
WEI Y , JIN Z , ZHANG M , et al. Impact of spent mushroom substrate on Cd immobilization and soil property[J]. Environmental Science and Pollution Research, 2020, 27 (3): 3007- 3022.
doi: 10.1007/s11356-019-07138-y |
18 |
LEONG Y K , MA T , CHANG J , et al. Recent advances and future directions on the valorization of spent mushroom substrate (SMS): a review[J]. Bioresource Technology, 2022, 344, 126157.
doi: 10.1016/j.biortech.2021.126157 |
19 |
JIN Z , ZHANG M , LI R , et al. Spent mushroom substrate combined with alkaline amendment passivates cadmium and improves soil property[J]. Environmental Science and Pollution Research, 2020, 27 (14): 16317- 16325.
doi: 10.1007/s11356-020-08099-3 |
20 |
SARWAR N , MALHI S S , ZIA M H , et al. Role of mineral nutrition in minimizing cadmium accumulation by plants[J]. Journal of the Science of Food and Agriculture, 2010, 90 (6): 925- 937.
doi: 10.1002/jsfa.3916 |
21 |
HUSSAIN A , RIZWAN M , ALI S , et al. Combined use of different nanoparticles effectively decreased cadmium (Cd) concentration in grains of wheat grown in a field contaminated with Cd[J]. Ecotoxicology and Environmental Safety, 2021, 215, 112139.
doi: 10.1016/j.ecoenv.2021.112139 |
22 |
XIA S , WANG J , CHEN Z , et al. Foliar application of several reagents reduces Cd concentration in wheat grains[J]. Environmental Science and Pollution Research, 2022, 29 (12): 17150- 17161.
doi: 10.1007/s11356-021-17003-6 |
23 | YOUNAS N, FATIMA I, AHMAD I A, et al. Alleviation of zinc deficiency in plants and humans through an effective technique; biofortification: a detailed review[J/OL]. Acta Ecologica Sinica. (2022-07-23)[2022-10-20]. https://doi.org/10.1016/j.chnaes.2022.07.008. |
24 |
CAKMAK I , KUTMAN U B . Agronomic biofortifi-cation of cereals with zinc: a review[J]. European Journal of Soil Science, 2018, 69 (1): 172- 180.
doi: 10.1111/ejss.12437 |
25 |
LIU N , HUANG X , SUN L , et al. Screening stably low cadmium and moderately high micronutrients wheat cultivars under three different agricultural environments of China[J]. Chemosphere, 2020, 241, 125065.
doi: 10.1016/j.chemosphere.2019.125065 |
26 | 中华人民共和国生态环境部. 土壤pH值的测定电位法: HJ 962—2018[S]. 北京: 中国环境出版集团, 2018. |
27 | 中华人民共和国环境保护部. 土壤电导率的测定电极法: HJ 802—2016[S]. 北京: 中国环境科学出版社, 2016. |
28 | 中华人民共和国农业部. 土壤检测第6部分: 土壤有机质的测定: NY/T 1121.6—2006[S]. 北京: 中国农业出版社, 2006. |
29 | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 150- 152. |
30 | 中华人民共和国环境保护部. 土壤有效磷的测定碳酸氢钠浸提-钼锑抗分光光度法: HJ 704—2014[S]. 北京: 中国环境科学出版社, 2014. |
31 | 中华人民共和国农业部. 土壤速效钾和缓效钾含量的测定: NY/T 889—2004[S]. 北京: 中国农业出版社, 2004. |
32 | 国家质量监督检验检疫总局, 国家标准化管理委员会. 土壤质量有效态铅和镉的测定原子吸收法: GB/T 23739—2009[S]. 北京: 中国标准出版社, 2009. |
33 | 国家卫生和计划生育委员会. 食品安全国家标准食品中镉的测定: GB 5009.15—2014[S]. 北京: 中国标准出版社, 2014. |
34 | SHAHID M , DUMAT C , KHALID S , et al. Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system[J]. Reviews of Environmental Contamination and Toxicology, 2017, 241, 73- 137. |
35 | KIRKHAM M B . Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments[J]. Geoderma, 2006, 137 (1/2): 19- 32. |
36 |
LINDSAY W L , NORVELL W A . Development of a DTPA soil test for zinc, iron, manganese, and copper[J]. Soil Science Society of America Journal, 1978, 42 (3): 421- 428.
doi: 10.2136/sssaj1978.03615995004200030009x |
37 |
SHI R , HONG Z , LI J , et al. Mechanisms for increasing the pH buffering capacity of an acidic ultisol by crop residue-derived biochars[J]. Journal of Agricultural and Food Chemistry, 2017, 65 (37): 8111- 8119.
doi: 10.1021/acs.jafc.7b02266 |
38 | XIAN X F , SHOKOHIFARD G I . Effect of pH on chemical forms and plant availability of cadmium, zinc, and lead in polluted soils[J]. Water Air and Soil Pollution, 1989, 45 (3/4): 265- 273. |
39 | BARROW N J . Reaction of anions and cations with variable-charge soils[J]. Advances in Agronomy, 1985, 38, 183- 230. |
40 | SHAHEEN S M , TSADILAS C D , RINKLEBE J . A review of the distribution coefficients of trace elements in soils: influence of sorption system, element characteristics, and soil colloidal properties[J]. Advances in Colloid and Interface Science, 2013, 201 |
41 |
FRUTOS I , GARCÍA-DELGADO C , GÁRATE A , et al. Biosorption of heavy metals by organic carbon from spent mushroom substrates and their raw materials[J]. International Journal of Environmental Science and Technology, 2016, 13 (11): 2713- 2720.
doi: 10.1007/s13762-016-1100-6 |
42 |
TAY C C , LIEW H H , YIN C , et al. Biosorption of cadmium ions using Pleurotus ostreatus: growth kinetics, isotherm study and biosorption mechanism[J]. Korean Journal of Chemical Engineering, 2011, 28 (3): 825- 830.
doi: 10.1007/s11814-010-0435-9 |
43 |
CHEN L , ZHOU W , LUO L , et al. Short-term resp-onses of soil nutrients, heavy metals and microbial community to partial substitution of chemical fertilizer with spent mushroom substrates (SMS)[J]. Science of The Total Environment, 2022, 844, 157064.
doi: 10.1016/j.scitotenv.2022.157064 |
44 |
ZHOU J , ZHANG C , DU B , et al. Effects of zinc application on cadmium (Cd) accumulation and plant growth through modulation of the antioxidant system and translocation of Cd in low- and high-Cd wheat cultivars[J]. Environmental Pollution, 2020, 265, 115045.
doi: 10.1016/j.envpol.2020.115045 |
45 | 曹玉巧, 聂庆凯, 高云, 等. 植物中镉及其螯合物相关转运蛋白研究进展[J]. 作物杂志, 2018, (3): 15- 24. |
CAO Yuqiao , NIE Qingkai , GAO Yun , et al. The studies on cadmium and its chelate related transporters in plants[J]. Crops, 2018, (3): 15- 24. | |
46 |
ZHOU Z , ZHANG B , LIU H , et al. Zinc effects on cadmium toxicity in two wheat varieties (Triticum aestivum L.) differing in grain cadmium accumulation[J]. Ecotoxicology and Environmental Safety, 2019, 183, 109562.
doi: 10.1016/j.ecoenv.2019.109562 |
47 |
CHEN F , BASHIR A , ZIA UR REHMAN M , et al. Combined effects of green manure and zinc oxide nanoparticles on cadmium uptake by wheat (Triticum aestivum L.)[J]. Chemosphere, 2022, 298, 134348.
doi: 10.1016/j.chemosphere.2022.134348 |
48 | RIZWAN M , ALI S , HUSSAIN A , et al. Effect of zinc-lysine on growth, yield and cadmium uptake in wheat (Triticum aestivum L.) and health risk assessment[J]. Chemosphere, 2017, 187, 35- 42. |
49 | LU T , WANG W , LIU L , et al. Remediation of cadmium-polluted weakly alkaline dryland soils using iron and manganese oxides for immobilized wheat uptake[J]. Journal of Cleaner Production, 2022, 365, 132794. |
50 | LI J , DAI J , LIU G , et al. Biochar from microwave pyrolysis of biomass: a review[J]. Biomass and Bioenergy, 2016, 94, 228- 244. |
51 | LUO F , YANG D , CHEN Z , et al. One-step green synthesis of bimetallic Fe/Pd nanoparticles used to degrade orange Ⅱ[J]. Journal of Hazardous Materials, 2016, 303, 145- 153. |
No related articles found! |
|