您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (3): 1-13.doi: 10.6040/j.issn.1672-3961.0.2022.354

• 岩土工程稳定性分析与加固专题 •    下一篇

活动断层下城市地铁隧道变形破坏与损伤

肖文斌1(),谢印标2,*(),郑扬1,武科1,陈榕3,李秋雷1,程睿哲1   

  1. 1. 山东大学土建与水利学院, 山东 济南 250061
    2. 临沂市建筑设计研究院有限责任公司, 山东 临沂 276000
    3. 东北电力大学建筑工程学院, 吉林 吉林 132012
  • 收稿日期:2022-10-24 出版日期:2023-06-20 发布日期:2023-07-07
  • 通讯作者: 谢印标 E-mail:202135057@mail.sdu.edu.cn;3174796@qq.com
  • 作者简介:肖文斌(1997—),男,山东潍坊人,硕士研究生,主要研究方向为结构工程。E-mail: 202135057@mail.sdu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(51308323)

Deformation failure and damage evolution of urban metro tunnels under active faults

Wenbin XIAO1(),Yinbiao XIE2,*(),Yang ZHENG1,Ke WU1,Rong CHEN3,Qiulei LI1,Ruizhe CHENG1   

  1. 1. School of Civil Engineering, Shandong University, Jinan 250061, Shandong, China
    2. Linyi Architectural Design and Research Institute Co., Ltd., Linyi 276000, Shandong, China
    3. School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin 132012, Jilin, China
  • Received:2022-10-24 Online:2023-06-20 Published:2023-07-07
  • Contact: Yinbiao XIE E-mail:202135057@mail.sdu.edu.cn;3174796@qq.com

摘要:

依托某跨断层隧道工程, 建立断层-隧道-围岩的精细化三维数值模型, 考虑实际盾构施工中的注浆压力、顶推力、注浆时效硬化和材料的非线性行为。通过数值模型分析盾构隧道穿越不同宽度、倾角、倾向的断层破碎带时的变形机制、力学特性及损伤演化, 利用控制变量法分别改变断层的宽度、倾角和倾向来研究单一变量的影响。研究结果表明:隧道拱顶的变形和损伤面积与断层宽度的增加呈现正相关, 随着断层宽度的增加拱顶挤压现象更加明显, 但当断层宽度增加至一定限值时, 衬砌拱顶将脱离围岩向洞内凹陷, 拱顶的应力呈现先增大后减小的趋势;随着断层倾角的增加, 衬砌拱顶向洞内收敛量先增后减小, 初始损伤位置与断层倾角相关; 断层倾向增加使隧道的损伤范围和程度不断减小, 环向应力集中受断层倾向影响较明显, 随断层倾向的增加, 雷达应力图由“X”逐渐转变为“十”字形。在隧道选址阶段, 应尽量让隧道正交穿越断层且在穿越较宽的断层时提前采取预加固措施来保证隧道的安全稳定性。

关键词: 活动断层, 盾构隧道, 数值分析, 损伤演化, 力学特性

Abstract:

Based on a tunnel project across a fault, a refined three-dimensional numerical model of fault tunnel surrounding rock was established in this study. The grouting pressure, jacking force, grouting hardening and nonlinear behavior of materials in actual shield construction were considered in the models. Through a series of numerical models, the deformation mechanism, mechanical properties and damage evolution of shield tunnels crossing fault fracture zones with different widths, dip angles and included angle were analyzed. In numerical simulation, the control variable method was used to change the width, dip angle and included angle of the fault respectively to study the influence of a single variable. The results showed that the deformation and damage area of tunnel vault were positively correlated with the increase of fault width. With the increase of the fault width, the arch extrusion became more obvious. However, when the fault width increased to a certain limit, the lining arch would converge to the tunnel from the surrounding rock, and the stress in the arch would increase first and then decrease. With the increase of fault dip angle, the inward convergence of lining arch crown first increased and then decreased, and the initial damage location was related to the fault dip angle. The damage scope and extent of the tunnel decreased continuously with the increase of fault included angle. The circumferential stress concentration was obviously affected by the fault included angle. With the increase of fault tendency, the radar stress gradually changed from "X" to "cross-shaped". Therefore, the tunnel should cross the fault orthogonally as far as possible in the stage of tunnel location and pre-reinforcement measures should be taken in advance when crossing a wide fault to ensure the safety and stability of the tunnel.

Key words: active faults, shield tunnels, numerical analysis, damage evolution, mechanical properties

中图分类号: 

  • TU43

图1

隧道地质断面图"

图2

岩芯取样"

图3

三维数值模型"

图4

滑动摩擦接触面示意图"

表1

岩石参数"

材料类型 密度/(kg·m-3) 弹性模量/MPa 泊松比 内摩擦角/(°) 黏聚力/kPa
断层破碎带 2 040 110 0.30 28 35
强风化花岗岩 2 296 300 0.28 36 150

图5

混凝土单轴应力应变关系图"

表2

混凝土部分损伤参数"

应力/MPa 非弹性应变/% 受压损伤因子 应力/MPa 开裂应变/% 损伤/%
18.9 0 0 2.73 0 0
32.9 0.048 0.183 4 2.42 0.002 13.940
33.1 0.091 0.283 1 2.02 0.005 27.222
31.9 0.111 0.326 0 1.70 0.008 37.648
28.5 0.155 0.410 4 1.45 0.010 45.651
23.1 0.221 0.517 6 1.26 0.012 51.870
17.7 0.304 0.620 7 1.12 0.014 56.801
13.2 0.402 0.704 9 0.91 0.018 64.082
8.0 0.619 0.810 6 0.57 0.030 77.057
5.6 0.828 0.861 2 0.31 0.062 88.159

表3

支护措施的力学参数"

材料类型 力学行为 密度/(kg·m-3) 弹性模量/MPa 泊松比 内摩擦角/(°) 黏聚力/kPa
盾构机 弹性 7 600 200 000 0.30
衬砌 弹性 2 500 24 150 0.20 16.5 25
注浆层(初始) 弹性 2 420 48 0.35
注浆层(硬化) 弹性 2 420 230 0.30

表4

数值模型计算工况"

断层倾角/(°) 断层宽度/m 断层倾向/(°) 断层倾角/(°) 断层宽度/m 断层倾向/(°)
90 3D 0 75 20 0
90 4D 0 90 20 0
90 5D 0 90 20 45
90 5.5D 0 90 20 60
90 7D 0 90 20 75
60 20 m 0 90 20 90

图6

隧道拱顶拱底沉降变化"

图7

隧道关键衬砌环向应力变化"

图8

隧道整体拉伸损伤"

图9

隧道衬砌压缩损伤"

图10

隧道拱顶拱底沉降变化"

图11

隧道关键环的应力变化"

图12

隧道整体拉伸损伤"

图13

隧道拱顶拱底沉降变化"

图14

隧道关键环的应力变化"

图15

隧道衬砌拉伸损伤"

图16

隧道衬砌整体拉伸损伤"

表5

各计算工况下隧道的变形特征"

计算工况 拱顶最大沉降/mm 拱底最大沉降/mm 拱侧最大水平位移/mm
工况Ⅰ-1 (w=3D) 3.9 1.9 1.5
工况Ⅰ-2 (w=4D) 5.2 2.4 1.4
工况Ⅰ-3 (w=5D) 6.4 2.6 1.9
工况Ⅰ-4 (w=5.5D) 8.3 2.7 3.8
工况Ⅰ-5 (w=7D) 9.8 4.2 4.7
工况Ⅱ-1 (β=60°) 6.5 1.9 0.2
工况Ⅱ-2 (β=75°) 3.5 1.9 0.1
工况Ⅱ-2 (β=90°) 4.4 2.1 0.1
工况Ⅲ-1 (α=45°) 4.9 2.6 0.2
工况Ⅲ-2 (α=60°) 4.3 2.2 0.2
工况Ⅲ-3 (α=75°) 4.8 2.5 0.1
工况Ⅲ-3 (α=90°) 4.4 2.1 0.1
1 秦峰, 王少飞, 肖博, 等. 截至2021年底中国10 km以上特长公路隧道统计[J]. 隧道建设(中英文), 2022, 42 (6): 1111- 1116.
QIN Feng , WANG Shaofei , XIAO Bo , et al. Statistics of super-long highway tunnels over 10 km in China as of the end of 2021[J]. Tunnel Construction, 2022, 42 (6): 1111- 1116.
2 洪开荣, 冯欢欢. 中国公路隧道近10年的发展趋势与思考[J]. 中国公路学报, 2020, 33 (12): 62- 76.
doi: 10.19721/j.cnki.1001-7372.2020.12.005
HONG Kairong , FENG Huanhuan . Development trends and views of highway tunnels in China over the past decade[J]. China Journal of Highway and Transport, 2020, 33 (12): 62- 76.
doi: 10.19721/j.cnki.1001-7372.2020.12.005
3 邢志豪, 朱斌, 王健, 等. 溶洞注浆加固的空间属性对地铁盾构隧道建设安全的影响效应[J]. 山东大学学报(工学版), 2022, 52 (4): 183- 190.
XING Zhihao , ZHU Bin , WANG Jian , et al. Influence of spatial attribute of karst cave grouting reinforcement on the safety of subway shield tunnel construction[J]. Journal of Shandong University (Engineering Science), 2022, 52 (4): 183- 190.
4 韩常领, 夏才初, 徐晨. 软岩隧道挤压性大变形控制技术研究进展[J]. 地下空间与工程学报, 2020, 16 (增刊1): 492- 505.
HAN Changling , XIA Caichu , XU Chen . Research progress for the control measures of the tunnel large deformation in squeezing rocks[J]. Chinese Journal of Underground Space and Engineering, 2020, 16 (Suppl.1): 492- 505.
5 汪振, 钟紫蓝, 赵密, 等. 正断型断裂模拟及其对山岭隧道影响研究[J]. 岩土工程学报, 2020, 42 (10): 1876- 1884.
WANG Zhen , ZHONG Zilan , ZHAO Mi , et al. Simulation of normal fault rupture and its impact on mountain tunnels[J]. Chinese Journal of Geotechnical Engineering, 2020, 42 (10): 1876- 1884.
6 谢远. 断层破碎带段隧道围岩稳定性分析及变形控制研究[D]. 西安: 长安大学, 2021.
XIE Yuan. Stability analysis and deformation control of tunnel surrounding rock in fault fracture zone[D]. Xi'an: Chang'an University, 2021.
7 徐杨. 青岛地铁施工过断层破碎带围岩稳定性分析[D]. 青岛: 青岛理工大学, 2018.
XU Yang. Stability analysis of surrounding rock in Qingdao Metro construction through fault fracture zone[D]. Qingdao: Qingdao University of Technology, 2018.
8 张庆艳, 陈卫忠, 袁敬强, 等. 断层破碎带突水突泥演化特征试验研究[J]. 岩土力学, 2020, 41 (6): 1911- 1922.
ZHANG Qingyan , CHEN Weizhong , YUAN Jingqiang , et al. Experimental study on evolution characteristics of water and mud inrush in fault fractured zone[J]. Rock and Soil Mechanics, 2020, 41 (6): 1911- 1922.
9 王涵, 高永涛, 李建旺. 隧道穿越断层破碎带施工方案及力学效应研究[J]. 公路, 2021, 66 (2): 316- 323.
WANG Han , GAO Yongtao , LI Jianwang . Research on construction plan and mechanical effect of highway tunnel crossing fault fracture zone[J]. Highway, 2021, 66 (2): 316- 323.
10 马丹, 段宏宇, 张吉雄, 等. 断层破碎带岩体突水灾害的蠕变-冲蚀耦合力学特性试验研究[J]. 岩石力学与工程学报, 2021, 40 (9): 1751- 1763.
MA Dan , DUAN Hongyu , ZHANG Jixiong , et al. Experimental investigation of creep-erosion coupling mechanical properties of water inrush hazards in fault fracture rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40 (9): 1751- 1763.
11 李相辉, 张庆松, 张霄, 等. 非均质断层破碎带注浆扩散机理[J]. 工程科学与技术, 2018, 50 (2): 67- 76.
LI Xianghui , ZHANG Qingsong , ZHANG Xiao , et al. Grouting diffusion mechanism in heterogeneous fault-fracture zone[J]. Advanced Engineering Sciences, 2018, 50 (2): 67- 76.
12 李凤岭. 穿越断层破碎带铁路隧道施工与监测[J]. 青岛理工大学学报, 2017, 38 (2): 17- 25.
LI Fengling . Construction and monitoring of railway tunnel through fault fracture zone[J]. Journal of Qingdao University of Technology, 2017, 38 (2): 17- 25.
13 ZAHERI M , RANJBARNIA M , DIAS D , et al. Performance of segmental and shotcrete linings in shallow tunnels crossing a transverse strike-slip faulting[J]. Transportation Geotechnics, 2020, 23, 100333.
14 刘学增, 刘金栋, 李学锋, 等. 逆断层铰接式隧道衬砌的抗错断效果试验研究[J]. 岩石力学与工程学报, 2015, 34 (10): 2083- 2090.
LIU Xuezeng , LIU Jindong , LI Xuefeng , et al. Experimental research on effect of anti-dislocation of highway tunnel lining with hinge joints in thrust fault[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (10): 2083- 2090.
15 MEHDI Sabagh , ABBAS Ghalandarzadeh . Centrifuge experiments for shallow tunnels at active reverse fault intersection[J]. Frontiers of Structural and Civil Engineering, 2020, 14, 1- 15.
16 KONTOGIANNI V A , STIROS S C . Earthquakes and seismic faulting: effects on tunnel[J]. Turkish Journal of Earth Sciences, 2003, 12 (1): 153- 156.
17 李玉生, 翁贤杰, 王人杰, 等. 隧道穿越断层破碎带突水突泥机理模拟试验研究[J]. 公路交通科技, 2020, 37 (12): 89- 99.
LI Yusheng , WENG Xianjie , WANG Renjie , et al. Experimental study on simulating mechanism of water and mud inrush in tunnel crossing fault fracture zone[J]. Journal of Highway and Transportation Research and Development, 2020, 37 (12): 89- 99.
18 贾艳领, 钟乃龙, 欧阳璐, 等. 断层破碎带隧道地质综合超前预报应用实践[J]. 公路, 2021, 66 (3): 353- 359.
JIA Yanling , ZHONG Nailong , OUYANG Lu , et al. Application practice of geological comprehensive advance prediction for tunnel in fault fracture zone[J]. Highway, 2021, 66 (3): 353- 359.
19 卢庆钊. 基于AHP-Fuzzy的隧道穿富水断层破碎带突水涌泥评估[J]. 地下空间与工程学报, 2021, 17 (增刊1): 439- 448.
LU Qingzhao . Risk assessment of water and mud inrush in tunnel crossing water-rich fault fracture zone based on AHP-fuzzy[J]. Chinese Journal of Underground Space and Engineering, 2021, 17 (Suppl.1): 439- 448.
20 KIREMIDJIAN A S . Reliability of structures subjected to differential fault slip[J]. Earthquake Engineering & Structural Dynamics, 1984, 12 (5): 603- 618.
21 王丽萍, 张伟, 罗文文, 等. 基于区域地震活动性参数的断层错动量概率分析方法[J]. 自然灾害学报, 2018, 27 (4): 166- 170.
WANG Liping , ZHANG Wei , LUO Wenwen , et al. Seismic hazard analysis method for fault rupture and dislocation based on regional seismicity parameters[J]. Journal of Natural Disasters, 2018, 27 (4): 166- 170.
22 BAZIAR M H , NABIZADEH A , MEHRABI R , et al. Evaluation of underground tunnel response to reverse fault rupture using numerical approach[J]. Soil Dynamics and Earthquake Engineering, 2016, 83, 1- 17.
23 ZHAO Kun , CHEN Weizhong , YANG Diansen , et al. Mechanical tests and engineering applicability of fiber plastic concrete used in tunnel design in active fault zones[J]. Tunnelling and Underground Space Technology, 2019, 88, 200- 208.
24 安韶, 陶连金, 边金, 等. 跨活动断裂带城市浅埋地铁隧道结构两阶段设计方法研究[J]. 中南大学学报(自然科学版), 2020, 51 (9): 2558- 2570.
AN Shao , TAO Lianjin , BIAN Jin , et al. Study on two-level design method of urban shallow subway tunnel structure crossing active fault[J]. Journal of Central South University(Science and Technology), 2020, 51 (9): 2558- 2570.
25 焦鹏飞, 来弘鹏. 不同倾角逆断层错动对隧道结构影响理论分析[J]. 土木工程学报, 2019, 52 (2): 106- 117.
JIAO Pengfei , LAI Hongpeng . Theoretical analysis on the influence of different dip angle reverse faults' dislocation on tunnel structure[J]. China Civil Engineering Journal, 2019, 52 (2): 106- 117.
26 丁祖德, 肖南润, 文锦诚, 等. 逆断层错动下ECC衬砌结构非线性力学响应分析[J]. 铁道科学与工程学报, 2021, 18 (9): 2375- 2384.
DING Zude , XIAO Nanrun , WEN Jincheng , et al. Nonlinear mechanical response analysis of ECC lining structure under reverse fault dislocation[J]. Journal of Railway Science and Engineering, 2021, 18 (9): 2375- 2384.
27 ZHANG Jiaqi , LI Shucai , ZHANG Qingsong , et al. Mud inrush flow mechanisms: a case study in a water-rich fault tunnel[J]. Bulletin of Engineering Geology and the Environment, 2019, 78 (8): 1- 17.
28 祁文睿, 高永涛. 公路隧道穿越软弱破碎围岩综合施工及监测技术研究[J]. 公路交通科技, 2021, 38 (11): 88- 96.
QI Wenrui , GAO Yongtao . Study on comprehensive construction and monitoring technology of highway tunnel crossing weak and fractured surrounding rock[J]. Journal of Highway and Transportation Research and Development, 2021, 38 (11): 88- 96.
29 XUE Yiguo , ZHOU Binghua . Deformation rule and mechanical characteristic analysis of subsea tunnel crossing weathered trough[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2021, 114, 1- 9.
30 马栋, 闫肃, 王武现. 赣深高铁龙南隧道大型富水断层破碎带施工技术[J]. 隧道建设(中英文), 2020, 40 (11): 1634- 1641.
MA Dong , YAN Su , WANG Wuxian . Construction technology of large-scale water-rich fault and fractured zone in Longnan Tunnel on Jiangxi-Shenzhen High-peed Railway[J]. Tunnel Construction, 2020, 40 (11): 1634- 1641.
31 冉万云. 近水库铁路隧道穿越F4断层施工与监测分析[J]. 重庆交通大学学报(自然科学版), 2015, 34 (6): 37- 42.
RAN Wanyun . Construction and monitoring of railway tunnel adjacent to reservoir through F4 fault[J]. Journal of Chongqing Jiaotong University(Natural Science), 2015, 34 (6): 37- 42.
32 RODRIGUEZ L E M. Estudio de los movimientos originados por la excavación de túneles con escudos de presión de tierras en lossue los tosquizos de Madrid[D]. Corua, Spain: University of La Corua, 2000.
33 中国建筑科学研究院. 混凝土结构设计规范: GB50010—2010[S]. 北京: 中国建筑工业出版社, 2010.
34 CHEN G M , TENG J G , CHEN J F . Finite-element modeling of intermediate crack debonding in FRP-plated RC beams[J]. Journal of Composites for Construction, 2011, 15 (3): 339- 353.
35 LV Jianbin , LI Xulong , LI Zhanrong , et al. Numerical simulations of construction of shield tunnel with small clearance to adjacent tunnel without and with isolation pile reinforcement[J]. KSCE Journal of Civil Engineering, 2019, 24 (1): 295- 309.
36 李莉, 高谦, 王正辉. 金川二矿区深度1 178 m中段采场巷道支护设计与稳定性分析[J]. 有色金属(矿山部分), 2005, (1): 19- 22.
LI Li , GAO Qian , WANG Zhenghui . Support design and stability analysis of the middle section stope roadway with a depth of 1 178 m in Jinchuan No. 2 Mining Area[J]. Nonferrous Metals(Mining), 2005, (1): 19- 22.
37 陈玉. 共和隧道围岩大变形机制及防治措施研究[D]. 重庆: 重庆大学, 2008.
CHEN Yu. Study on large deformation mechanism and prevention technique of the wall rock in gong he tunnel[D]. Chongqing: Chongqing University, 2008.
38 张自政, 李树清, 于宪阳, 等. 深井穿断层回采巷道围岩变形机理与稳定控制对策[J]. 湖南科技大学学报(自然科学版), 2020, 35 (1): 10- 16.
ZHANG Zizheng , LI Shuqing , YU Xianyang , et al. Deformation mechanism and stability control of surrounding rock in deep roadway through the fault[J]. Journal of Hunan University of Science & Technology (Natural Science Edition), 2020, 35 (1): 10- 16.
39 万飞, 谭忠盛, 马栋. 关角隧道F2-1断层破碎带支护结构优化设计[J]. 岩石力学与工程学报, 2014, 33 (3): 531- 538.
WAN Fei , TAN Zhongsheng , MA Dong . Optimizing design of support structure for GuanJiao tunnel in fault-rupture zone F2-1[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33 (3): 531- 538.
40 何满潮. 煤矿软岩工程与深部灾害控制研究进展[J]. 煤炭科技, 2012, (3): 1- 5.
HE Manchao . Research progress on soft rock engineering and deep disaster control in coal mines[J]. Coal Science & Technology Magazine, 2012, (3): 1- 5.
41 朱淳, 何满潮, 张晓虎, 等. 恒阻大变形锚杆非线性力学模型及恒阻行为影响参数分析[J]. 岩土力学, 2021, 42 (7): 1911- 1924.
ZHU Chun , HE Manchao , ZHANG Xiaohu , et al. Nonlinear mechanical model of constant resistance and large deformation bolt and influence parameters analysis of constant resistance behavior[J]. Rock and Soil Mechanics, 2021, 42 (7): 1911- 1924.
42 王政坛. 小直径锚索在高地应力大变形隧道施工中的应用[J]. 隧道建设, 2005, (3): 42- 45.
[1] 邢志豪,朱斌,王健,孙培芹,武科,徐嘉祥,孙杰,郑扬. 溶洞注浆加固的空间属性对地铁盾构隧道建设安全的影响效应[J]. 山东大学学报 (工学版), 2022, 52(4): 183-190.
[2] 朱斌,王健,徐壮,罗小刚,孟栋,邢志豪,张政,武科. 新建盾构隧道下穿既有构筑物施工的力学机理[J]. 山东大学学报 (工学版), 2022, 52(4): 175-182.
[3] 张福海,周玉石,刘学港,秦承帅,孙子正,张一鸣. 基于斜桩支护的框架结构基坑变形分析[J]. 山东大学学报 (工学版), 2022, 52(1): 58-65.
[4] 韩家桢,王勇,谢玉东,王启先,张新标,高文彬,李荣兰,张传军. 深海带电插拔连接器力学特性分析[J]. 山东大学学报 (工学版), 2020, 50(6): 30-39.
[5] 黄淑亭,翟晓宇,刘延俊,史宏达. 淹没深度对三自由度波能浮子获能的影响[J]. 山东大学学报 (工学版), 2020, 50(6): 17-22.
[6] 徐振,李德明,王彬,詹谷益,张世杰. 硬岩隧道纯钢纤维混凝土管片应用[J]. 山东大学学报 (工学版), 2020, 50(5): 44-49.
[7] 张宇磊,王勇,谢玉东,孙光,王艳芸,韩家桢. 新型液态金属磁流体发电动力学特性数值模拟[J]. 山东大学学报 (工学版), 2019, 49(1): 101-106.
[8] 刘纪峰,杨欢欢. 超近距双线隧道旁穿建筑群的信息化施工风险控制[J]. 山东大学学报(工学版), 2017, 47(3): 102-111.
[9] 秦小琼1,2, 刘德学1*. 杯形件反挤压变形力的滑移线场数值分析解[J]. 山东大学学报(工学版), 2011, 41(6): 66-69.
[10] 周海鹰1,李立新2,陈廷国1. 地铁隧道衬砌管片承载力试验及计算方法[J]. 山东大学学报(工学版), 2010, 40(4): 84-87.
[11] 赵元宾,孙奉仲,王凯,高明 . 自然通风湿式冷却塔传热传质的三维数值分析[J]. 山东大学学报(工学版), 2008, 38(5): 36-41 .
[12] 王恩东 . 箱梁桥桥面铺装受力特性研究[J]. 山东大学学报(工学版), 2008, 38(2): 71-76 .
[13] 曲延鹏,李春峰,隋荣娟,滕书格,王小鹏 . 自激脉冲喷嘴结构参数对涡环影响的数值分析[J]. 山东大学学报(工学版), 2006, 36(2): 17-21 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[2] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[3] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[4] 施来顺,万忠义 . 新型甜菜碱型沥青乳化剂的合成与性能测试[J]. 山东大学学报(工学版), 2008, 38(4): 112 -115 .
[5] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[6] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[7] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[8] 李梁,罗奇鸣,陈恩红. 对象级搜索中基于图的对象排序模型(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 15 -21 .
[9] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[10] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .