山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (5): 123-131.doi: 10.6040/j.issn.1672-3961.0.2022.186
• • 上一篇
鉴庆之1,孙东磊1,王超凡2*,刘晓明1,刘冬1,孙毅1,孙媛媛2
JIAN Qingzhi1, SUN Donglei1, WANG Chaofan2*, LIU Xiaoming1, LIU Dong1, SUN Yi1, SUN Yuanyuan2
摘要: 为建立一种新型的电力系统灵活性评估方法,实现高比例可再生能源电网的消纳及调峰灵活性的综合量化分析,在电力系统灵活性理论的基础上,将可再生能源的消纳情况纳入灵活性评估的范畴,提出以系统功率供需平衡为核心的高比例可再生能源电网消纳及调峰灵活性理论和分析方法。结合不同的可再生能源出力曲线,分析可再生能源接入对系统调峰灵活性的影响机理;基于系统总体的功率过剩和灵活性资源实时的爬坡能力不足情况,从可再生能源消纳灵活性和系统调峰灵活性两个方面构建评估指标;基于某含高比例可再生能源区域电网的实际数据设置算例,对所评估系统的灵活性盈余以及灵活性不足情况进行定量计算,并以可再生能源和储能机组装机量为变量进行工况区分,分析不同影响因素下系统灵活性的变化。算例表明,随可再生能源机组容量的增大,系统的调峰和消纳灵活性均有所降低,但随着储能机组接入容量的增加,高比例可再生能源造成的功率波动与消纳问题得以有效解决,系统调峰及消纳灵活性均有所提高,验证了本研究所提出的高比例可再生能源电网消纳及调峰灵活性综合评估体系的有效性。
中图分类号:
[1] 鲁宗相,李海波,乔颖. 含高比例可再生能源电力系统灵活性规划及挑战[J]. 电力系统自动化,2016,40(13):147-157. LU Zongxiang, LI Haibo, QIAO Ying. Flexible planning and challenges for power systems containing a high proportion of renewable energy[J]. Automation of Electric Power Systems, 2016, 40(13):147-157. [2] LANNOYE E, FLYNN D, O'MALLEY M. The role of power system flexibility in generation planning[C] //Proceedings of 2011 IEEE Power Engineering Society General Meeting. San Diego, USA: IEEE, 2011: 1-6. [3] LANNOYE E, FLYNN D, O'MALLEY M. Valuation of power system flexibility[J]. IEEE Transactions on Power Systems, 2012, 27(2):922-931. [4] 施涛,朱凌志,于若英.电力系统灵活性评价研究综述[J].电力系统保护与控制,2016,44(5):146-154. SHI Tao, ZHU Lingzhi, YU Ruoying. Overview of power system flexibility evaluation[J]. Power System Protection and Control, 2016, 44(5):146-154. [5] 肖定垚,王承民,曾平良,等.电力系统灵活性及其评价综述[J].电网技术,2014,38(6):1569-1576. XIAO Dingyao, WANG Chengmin, ZENG Pingliang, et al. Overview of power system flexibility and its evaluation[J]. Power System Technology, 2014, 38(6):1569-1576. [6] KEN D, GEORGIOS P. Power system flexibility strategic roadmap[R]. Brussels, BEL:European Copper Inst-itute, 2015. [7] LUND P D, LINDGREN J, MIKKOLA J, et al. Review of energy system flexibility measures to enable high levels of variable renewable electricity[J].Renewable & Sustainable Energy Reviews, 2015(45):785-807. [8] LANNOYE E, FLYNN D, O'MALLEY M. Power system flexibility assessment-state of the art[C] //Power & Energy Society General Meeting.Montreal, Canada:IEEE, 2012: 1-6. [9] 鲁宗相,李海波,乔颖. 高比例可再生能源并网的电力系统灵活性评价与平衡机理[J].中国电机工程学报,2017,37(1):9-19. LU Zongxiang, LI Haibo, QIAO Ying. Flexibility evaluation and supply/demand balance principle of power system with high-penetration renewable electricity[J]. Proce-edings of the CSEE, 2017, 37(1):9-19. [10] NOSAIR H, BOUFFARD F. Flexibility envelopes for power system operational planning[J]. IEEE Trans-actions on Sustainable Energy, 2015, 6(3):800-809. [11] 詹勋淞. 高比例可再生能源电网多尺度电源灵活性评估和储能配置研究[D].广州:华南理工大学,2020. ZHAN Xunsong. Research on multi-scale power supply flexibility evaluation and energy storage allocation of power system with high-penetration renewable electricity[D]. Guangzhou: South China University of Techn-ology, 2020. [12] 刘英琪,谢敏,韦薇,等.高比例风电接入的电力系统灵活性评估与优化[J].电力建设,2019,40(9):1-10. LIU Yingqi, XIE Min, WEI Wei, et al. Assessment and optimization for power system flexibility with high proportion of wind power[J]. Electric Power Construction, 2019, 40(9):1-10. [13] 李海波,鲁宗相,乔颖,等. 大规模风电并网的电力系统运行灵活性评估[J].电网技术,2015,39(6):1672-1678. LI Haibo, LU Zongxiang, QIAO Ying, et al. Assessment on operational flexibility of power grid with grid-connected large-scale wind farms[J]. Power System Technology, 2015, 39(6):1672-2678. [14] 李则衡,陈磊,路晓敏,等. 基于系统灵活性的可再生能源接纳评估[J]. 电网技术,2017,41(7):2187-2194. LI Zeheng, CHEN Lei, LU Xiaomin, et al. Assessment of renewable energy accommodation based on system flexibility analysis[J]. Power System Technology, 2017, 41(7):2187-2194. [15] CHANDLER H. Harnessing variable renewables: a guide to the balancing challenge[R]. Paris, France: International Energy Agency, 2011. [16] LI Dexin, WANG Jiarui, ZHANG Jiajun. Analysis of energy storage output characteristics based on photo-voltaic volatility[J]. Power System and Clean Energy, 37(2):99-107. [17] North American Electric Reliability Corporation. Special report: accommodating high levels of variable generation[R]. Atlanta, American: North American Electric Reliability Corporation, 2009. |
[1] | 刘萌,徐陶阳,李常刚,吴越,王智,史方芳,苏建军,张国辉,李宽. 基于粒子群算法的受端电网紧急切负荷优化[J]. 山东大学学报 (工学版), 2019, 49(1): 120-128. |
[2] | 丛旖旎,曹增功,牟宏,王春义,刘玉田. 百万千瓦级滩涂光伏电站接入电网分析[J]. 山东大学学报(工学版), 2017, 47(6): 77-82. |
[3] | 李莉,刘玉田 . 基于同调分群和自适应判据的失步解列策略[J]. 山东大学学报(工学版), 2007, 37(6): 49-53 . |
[4] | 牛新生,叶华,王亮 . SVC对山东电网的影响与配置地点选择[J]. 山东大学学报(工学版), 2007, 37(4): 68-72 . |
[5] | 张恒旭,高志民,曹永吉,秦昊,杨冬,马欢. 高比例可再生能源接入下电力系统惯量研究综述及展望[J]. 山东大学学报 (工学版), 2022, 52(5): 1-13. |
[6] | 张慧,叶华,李常刚,牟倩颖. 一种改进的时滞电力系统特征值高效计算方法[J]. 山东大学学报 (工学版), 2022, 52(5): 44-54. |
|