您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (4): 45-53.doi: 10.6040/j.issn.1672-3961.0.2021.537

• • 上一篇    

MEC中面向动态环境的工作流D2D协同卸载方法

钱程1,2,赵淦森1,2,罗浩宇1,2   

  1. 1.华南师范大学计算机学院, 广东 广州 510631;2.广州市云计算安全与测评技术重点实验室, 广东 广州 510631
  • 发布日期:2022-08-24
  • 作者简介:钱程(1997— ),男,安徽阜阳人,硕士研究生,主要研究方向为边缘计算. E-mail:qiancheng@m.scnu.edu.cn. *通信作者简介:罗浩宇(1989— ),男,江西萍乡人,研究员,博士,主要研究方向为服务计算、边缘计算、工作流系统. E-mail: hluo@m.scnu.edu.cn
  • 基金资助:
    广东省重点领域研发计划项目(2020B0101650001);国家自然科学基金项目(62002123);广东省基础与应用基础研究基金项目(2019A1515110212);国家重点研发计划项目(2018YFB1404402)

Dynamic environment oriented D2D collaborative offloading for workflow applications in mobile edge computing

QIAN Cheng1,2, ZHAO Gansen1,2, LUO Haoyu1,2   

  1. 1. School of Computer Science, South China Normal University, Guangzhou 510631, Guangdong, China;
    2. Key Lab on Cloud Security and Assessment Technology of Guangzhou, Guangzhou 510631, Guangdong, China
  • Published:2022-08-24

摘要: 为解决现实场景中终端设备的移动性与性能波动对工作流D2D(device-to-device)协同卸载带来的问题,提出一种面向动态环境的工作流D2D协同卸载方法,以尽可能小的卸载成本保证工作流在时间约束内得到及时响应。在工作流的卸载执行过程中感知其执行时间状态,并提出贪婪有序自适应搜索算法进行高效的工作流D2D卸载决策,根据环境变化及工作流执行时间状态在线调整卸载方案。仿真结果表明,该卸载方法在动态环境中具有有效性,并且卸载决策所需的计算开销很低(仅为粒子群优化算法的1.63%),具有较高的实时性。

关键词: 移动边缘计算, 工作流, D2D卸载, 计算卸载, 在线决策

中图分类号: 

  • TP399
[1] LI X J, CHEN T X, YUAN D, et al. Anovel graph-based computation offloading strategy for workflow applications in mobile edge computing[J/OL]. arXiv Preprint arXiv,[2022-07-20]. https://arxiv.org/abs/2102.12236.
[2] HOSSAIN M D, SULTANA T, HOSSAIN M A, et al. Fuzzy decision-based efficient task offloading management scheme in multi-tier MEC-enabled networks[J]. Sensors, 2021, 21(4): 1484.
[3] PU L J, CHEN X, XU J D, et al. D2D fogging: an energy-efficient and incentive-aware task offloading framework via network-assisted D2D collaboration[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(12): 3887-3901.
[4] PENG Q L, HE Q, XIA Y N, et al. Collaborative workflow scheduling over MANET, a user position prediction-based approach[C] //International Conference on Collaborative Computing: Networking, Applications and Worksharing. Shanghai, China: Springer, 2018: 33-52.
[5] BLYTHE J, JAIN S, DEELMAN E, et al. Tasks cheduling strategies for workflow-based applications in grids[C] // IEEE International Symposium on Cluster Computing and the Grid, 2005. Cardiff, UK: IEEE, 2005: 759-767.
[6] HU Y C, PATEL M, SABELLA D, et al. Mobile edge computing: a key technology towards 5G[J]. ETSI White Paper, 2015, 11(11): 1-16.
[7] SHADI M, ABRISHAMI S, MOHAJERZADEH A H, et al. Ready-time partitioning algorithm for computation offloading of workflow applications in mobile cloud computing[J]. The Journal of Supercomputing, 2021, 77(6): 6408-6434.
[8] BAEK H, KO H, PACK S. Privacy-preserving and trustworthy device-to-device(D2D)offloading scheme[J]. IEEE Access, 2020, 8: 191551-191560.
[9] LI Z J, HU H Y, HU H, et al. Security and energy-aware collaborative task offloading in D2D communication[J]. Future Generation Computer Systems, 2021, 118: 358-373.
[10] ZHANG X M. Enhancing mobile cloud with social-aware device-to-device offloading[J]. Computer Communications, 2021, 168: 1-11.
[11] WANG X J, NING Z L, GUO S. Multi-agent imitation learning for pervasive edge computing: a decentralized computation of floading algorithm[J]. IEEE Trans-actions on Parallel and Distributed Systems, 2020, 32(2): 411-425.
[12] PENG Q L, JIANG H C, CHEN M J, et al. Reliability-aware and deadline-constrained workflow scheduling in mobile edge computing[C] //2019 IEEE 16Th International Conference on Networking, Sensing and Control(Icnsc). Banff, Canada: IEEE, 2019: 236-241.
[13] MOGENSEN P, NA W, KOVÁCS I Z, et al. LTE capacity compared to the Shannon bound[C] //2007 IEEE 65th Vehicular Technology Conference-Vtc2007-Spring. Dublin, Ireland: IEEE, 2007: 1234-1238.
[14] ANAMURO C V, VARSIER N, SCHWOERER J, et al. Distance-aware relay selection in an energy-efficient discovery protocol for 5G D2D communication[J]. IEEE Transactions on Wireless Communications, 2021, 20(7): 4379-4391.
[15] CAMP T, BOLENG J, DAVIES V. Asurvey of mobility models for ad hoc network research[J]. Wireless Communications and Mobile Computing, 2002, 2(5): 483-502.
[16] BHARATHI S, CHERVENAK A, DEELMAN E, et al.Characterization of scientific workflows[C] //2008 Third Workshop on Workflows in Support of Large-Scale Science. Austin, USA: IEEE, 2008: 1-10.
[17] TOPCUOGLU H, HARIRI S, WU M Y. Performance-effective and low-complexity task scheduling for heterogeneous computing[J]. IEEE Transactions on Parallel and Distributed Systems, 2002, 13(3): 260-274.
[18] GUOFEI9987. Scikit-opt[CP/OL]. https://github.com/guofei9987/scikit-opt, 2021-7-13.
[1] 郑子君,冯翔,虞慧群,李修全. 基于关系转移和增强学习的时空大数据动态预测[J]. 山东大学学报 (工学版), 2021, 51(2): 105-114.
[2] 李金忠1, 夏洁武1, 曾劲涛1, 王翔2*. 运用改进的SPEA2算法优化网格工作流调度方法[J]. 山东大学学报(工学版), 2010, 40(5): 12-16.
[3] 周晓林,曾广周 . 一种基于P2P的工作流管理系统设计[J]. 山东大学学报(工学版), 2007, 37(5): 89-94 .
[4] 何青 . 一个基于TBAC的审批业务工作流模型[J]. 山东大学学报(工学版), 2006, 36(4): 120-124 .
[5] 胡程瑜,李大兴 . 带时间约束和角色控制的工作流系统授权模型[J]. 山东大学学报(工学版), 2006, 36(3): 39-42 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!