您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (4): 118-130.doi: 10.6040/j.issn.1672-3961.0.2021.302

• • 上一篇    

基于分区列表的增量闭合高效用模式挖掘方法

张春砚,韩萌*,孙蕊,杜诗语,申明尧   

  1. 北方民族大学计算机科学与工程学院, 宁夏 银川 750021
  • 发布日期:2022-08-24
  • 作者简介:张春砚(1995— ),女,河北张家口人,硕士研究生,主要研究方向为数据挖掘. E-mail: 310300538@qq.com. *通信作者简介:韩萌(1982— ),女,河南商丘人,教授,硕士生导师,博士,主要研究方向为数据挖掘. E-mail: 2003051@nmu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(62062004);宁夏自然科学基金资助项目(2020AAC03216);北方民族大学研究生创新项目资助项目(YCX20061)

A method for mining incremental closed high utility patterns based on partition list

ZHANG Chunyan, HAN Meng*, SUN Rui, DU Shiyu, SHEN Mingyao   

  1. School of Computer Science and Engineering, North Minzu University, Yinchuan 750021, Ningxia, China
  • Published:2022-08-24

摘要: 为减少构建效用列表的数量和占用的内存,在时间和空间方面提高挖掘性能,提出增量闭合高效用挖掘算法(incremental closed high utility mining, ICHUM),从增量数据集中有效地挖掘闭合高效用项集。此算法提出一个增量分区效用列表结构,该结构仅通过一次数据库扫描即可构建和更新列表,更有效地处理增量数据。在构造此列表结构的过程中,算法还应用有效的融合修剪策略,从而减少无效列表的构建数量。在各种数据集上的试验结果表明,与对比算法相比,该算法减少了30%的运行时间和33%的内存消耗,具有一定的可扩展性。

关键词: 增量挖掘, 闭合高效用模式, 增量分区效用列表, 效用, 融合修剪策略

中图分类号: 

  • TP301.6
[1] LIU J, WANG K, FUNG B C M. Direct discovery of high utility itemsets without candidate generation[C] //Proceedings of IEEE International Conference on Data Mining. Brussels, Belgium: IEEE, 2012: 984-989.
[2] RYANG H, YUN U. High utility pattern mining over data streams with sliding window technique[J]. Expert Systems with Applications, 2016, 57(9): 214-231.
[3] LIU Y, LIAO W K, CHOUDHARY A N. A two-phase algorithm for fast discovery of high utility itemsets[C] //Proceedings of Pacific-asia Conference on Advances in Knowledge Discovery and Data Mining. Hanoi, Vietnam: Springer-Verlag, 2005: 689-695.
[4] LIU M, QU J. Mining high utility itemsets without candidate generation[C] //Proceedings of ACM International Conference on Information and Knowledge Management. Hawaii, USA: ACM, 2012: 55-64.
[5] THU-LAN D, HERI R, KJETIL N, et al. Towards efficiently mining closed high utility itemsets from incremental databases[J]. Knowledge-Based Systems, 2019, 165(2): 13-29.
[6] TSENG V S, WU C W, FOURNIER-VIGER P, et al. Efficient algorithms for mining the concise and lossless representation of high utility itemsets[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(3): 726-739.
[7] AHMED C F, TANBEER S K, JEONG B S, et al. Efficient tree structures for high utility pattern mining in incremental databases[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(12): 1708-1721.
[8] LIN J C W, GAN W, HONG T P. A fast maintenance algorithm of the discovered high-utility itemsets with transaction deletion[J]. Intelligent Data Analysis, 2016, 20(4): 891-913.
[9] LIN J C W, GAN W, HONG T P, et al. An incremental high-utility mining algorithm with transaction insertion[J]. The Scientific World Journal, 2015, 2(1): 1-15.
[10] FOURNIER-VIGER P, LIN J C W, GUENICHE T, et al. Efficient incremental high utility itemset mining[C] //Proceedings of Ase Big Data & Social Informatics. Kaohsiung, China: ACM, 2015: 1-6.
[11] YUN U, RYANG H, LEE G, et al. An efficient algorithm for mining high utility patterns from incremental databases with one database scan[J]. Knowledge-Based Systems, 2017, 124(5): 188-206.
[12] YUN U, NAM H, LEE G, et al. Efficient approach for incremental high utility pattern mining with indexed list structure[J]. Future Generation Computer Systems, 2019, 95(6): 221-239.
[13] LIN C W, LAN G C, HONG T P. An incremental mining algorithm for high utility itemsets[J]. Expert Systems with Applications, 2012, 39(8): 7173-7180.
[14] LIN C W, HONG T P, GAN W, et al. Incrementally updating the discovered sequential patterns based on pre-large concept[J]. Intelligent Data Analysis, 2015, 19(5): 1071-1089.
[15] AHMED C F, TANBEER S K, JEONG B S, et al. Efficient tree structures for high utility pattern mining in incremental databases[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(12): 1708-1721.
[16] YUN U, KIM D. Efficient algorithm for mining high average-utility itemsets in incremental transaction databases[J]. Applied Intelligence, 2017, 47(1): 114-131.
[17] YUN U, RYANG H. Incremental high utility pattern mining with static and dynamic databases[J]. Applied Intelligence, 2015, 42(2): 323-352.
[18] 吴倩, 王林平, 罗相洲, 等. 动态数据库中增量Top-k高效用模式挖掘算法[J]. 计算机应用研究, 2017, 34(5): 1401-1405. WU Qian, WANG Linping, LUO Xiangzhou, et al. Incremental Top-k high utility pattern mining algorithm in dynamic database[J]. Application Research of Computers, 2017, 34(5): 1401-1405.
[19] LEE J, YUN U, LEE G, et al. Efficient incremental high utility pattern mining based on pre-large concept[J]. Engineering Applications of Artificial Intelligence, 2018, 72(5): 111-123.
[20] WU C W, FOURNIER-VIGER P, YU P S, et al. Efficient mining of a concise and lossless representation of high utility itemsets[J]. Knowledge and Data Engineering, 2015, 27(3): 726-739.
[21] WU C W, FOURNIER-VIGER P, GU J Y, et al. Mining closed+ high utility itemsets without candidate generation[C] //Proceedings of 2015 Conference on Technologies and Applications of Artificial Intelligence. Tainan, China: IEEE, 2016: 187-194.
[22] SAHOO J, DAS A K, GOSWAMI A. An efficient fast algorithm for discovering closed+ high utility itemsets[J]. Applied Intelligence, 2016, 45(1): 44-74.
[23] DAM T L, LI K, FOURNIER-VIGER P, et al. CLS-Miner: efficient and effective closed high utility itemset mining[J]. Frontiers of Computer Science, 2019, 13(2): 1-25.
[24] LTTN A, MI T. An efficient method for mining high utility closed itemsets[J]. Information Sciences, 2020, 495(4): 78-99.
[25] KRISHNAMOORTHY S. HMiner: efficiently mining high utility[J]. Expert Systems with Applications, 2017, 90(30): 168-183.
[26] SRIKUMAR K. Pruning strategies for mining high utility itemsets[J]. Expert Systems with Applications, 2015, 42(5): 2371-2381.
[27] FOURNIER-VIGER P, ZIDA S, LIN J C W, et al. EFIM-Closed: fast and memory efficient discovery of closed high-utility itemsets[J]. Machine Learning and Data Mining in Pattern Recognition, 2016, 9729(5): 199-213.
[1] 张妮,韩萌,王乐,李小娟,程浩东. 基于索引列表的增量高效用模式挖掘算法[J]. 山东大学学报 (工学版), 2022, 52(2): 107-117.
[2] 张春砚,韩萌,孙蕊,杜诗语,申明尧. 基于紧凑效用列表的增量高效用模式挖掘方法[J]. 山东大学学报 (工学版), 2021, 51(2): 122-128.
[3] 熊文涛,冯育强. 基于决策人满意度的区间UTA方法[J]. 山东大学学报(工学版), 2016, 46(2): 72-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!