山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (2): 122-128.doi: 10.6040/j.issn.1672-3961.0.2020.228
• • 上一篇
张春砚,韩萌*,孙蕊,杜诗语,申明尧
ZHANG Chunyan, HAN Meng*, SUN Rui, DU Shiyu, SHEN Mingyao
摘要: 针对存在大量冗余数据等问题,提出紧凑增量高效用挖掘算法。采用HUI-trie结构和紧凑效用列表两种结构,前者用于更新高效用项集的效用,后者用于存储信息,而无需生成任何候选项。这两种结构使算法无需再次分析整个数据集,就可以将增加的数据反映到以前的分析结果中,更有效地处理增量数据集。试验结果表明,该算法在各种数据集上,运行时间平均提高38%,内存平均减少32%,具有一定的可扩展性。
中图分类号:
[1] KRISTIAN S, RUDOLF S. An approach to cluster separability in a partition[J]. Information Sciences, 2015, 305(1): 208-218. [2] SÁ J, JARBAS J M, ANDRÉ R, et al. Shape class-ification using line segment statistics[J]. Information Sciences, 2015, 305(1): 349-356. [3] LIU J, WANG K, FUNG B C M. Direct discovery of high utility itemsets without candidate generation[C] //Processdings of IEEE International Conference on Data Mining. Brussels, Belgium: IEEE, 2012, 1: 984-989. [4] RYANG H, YUN U. High utility pattern mining over data streams with sliding window technique[J]. Expert Systems with Applications, 2016, 57(9): 214-231. [5] FOURNIER-VIGER P, LIN J C, GUENICHE T, et al. Efficient incremental high utility itemset mining[C] //Processdings of Ase Bigdata & Socialinformatics. Kaohsiung, China: ACM, 2015, 53: 1-6. [6] KRISHNAMOORTHY S. HMiner: efficiently mining high utility itemsets[J]. Expert Systems with Applications, 2017, 90(30): 168-183. [7] FOURNIER-VIGER P, WU C W, ZIDA S, et al. FHM: faster high-utility itemset mining using estimated utility co-occurrence pruning[J]. Lecture Notes in Computer Science, 2014, 8502: 83-92. [8] LIU Y, LIAO W K, CHOUDHARY A. A two-phase algorithm for fast discovery of high utility itemsets[C] //Processdings of Pacific-asia Conference on Advances in Knowledge Discovery & Data Mining. Heidelberg, Germany: Springer-Verlag, 2005, 3518: 689-695. [9] LIN C W, HONG T P, LU W H. An effective tree structure for mining high utility itemsets[J]. Expert Systems with Applications, 2011, 38(6): 7419-7424. [10] HAN J, PEI J. Mining frequent patterns without can-didate generation[C] //Processdings of the ACM SIGMOD International Conference on Management of Data. Texas, USA: Sigmod Record, 2000, 29(2): 1-12. [11] LIU M, QU J. Mining high utility itemsets without candidate generation[C] //Processdings of ACM Inter-national Conference on Information and Knowledge Management. Hawaii, USA: ACM, 2012: 55-64. [12] ZIDA S, FOURNIER-VIGER P, LIN J C W, et al. EFIM: a highly efficient algorithm for high-utility itemset mining[C] //Processdings of Mexican Inter-national Conference on Artificial Intelligence. Cuernavaca, Mexico: Springer, 2015, 9413: 530-546. [13] PENG A Y, KOH Y S, RIDDLE P. mHUIMiner: a fast high utility itemset mining algorithm for sparse datasets[C] //Processdings of PacificAsia Conference on Knowledge Discovery and Data Mining. Jeju, Korea: Springer, 2017: 196-207. [14] LIN C W, GAN W, FOURNIER-VIGER P, et al. Efficient mining of high-utility itemsets using multiple minimum utility thresholds[J]. Knowledge Based Systems, 2016, 113(1): 100-115. [15] GAN W, LIN C W, FOURNIER-VIGER P, et al. HUOPM: high-utility occupancy pattern mining[J]. IEEE Transactions on Cybernetics, 2020, 50(3): 1195-1208. [16] GAN W, LIN C W, FOURNIER-VIGER P, et al. Mining high-utility itemsets with both positive and negative unit profits from uncertain databases[C] //Processdings of Pacific-Asia Conference on Knowledge Discovery and Data Mining. Jeju, Korea: Springer, 2017: 434-446. [17] LIN C W, LAN G C, HONG T P. An incremental mining algorithm for high utility itemsets[J]. Expert Systems with Applications, 2012, 39(8): 7173-7180. [18] LIN C W. Incrementally updating the discovered sequential patterns based on pre-large concept[J]. Intelligent Data Analysis, 2015, 19(5): 1071-1089. [19] AHMED C F, TANBEER S K, JEONG B S, et al. Efficient tree structures for high utility pattern mining in incremental databases[J]. IEEE Transactions on Know-ledge and Data Engineering, 2009, 21(12): 1708-1721. [20] YUN U, KIM D. Efficient algorithm for mining high average-utility itemsets in incremental transaction databases[J]. Applied Intelligence, 2017, 47(1): 1-18. [21] YUN U, RYANG H, LEE G, et al. An efficient algorithm for mining high utility patterns from incremental databases with one database scan[J]. Knowledge Based Systems, 2017, 124(5): 188-206. [22] LIN C W, GAN W, HONG T P, et al. Incrementally updating high-utility itemsets with transaction insertion[C] //Processdings of International Conference on Advanced Data Mining and Applications. Guilin, China: Springer, 2014, 8933: 44-56. |
[1] | 熊文涛,冯育强. 基于决策人满意度的区间UTA方法[J]. 山东大学学报(工学版), 2016, 46(2): 72-77. |
|