山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (3): 86-93.doi: 10.6040/j.issn.1672-3961.0.2021.331
• • 上一篇
张自健1,2,赵军1,2,唐贤康1,2,孙超1,2,李峰3
ZHANG Zijian1,2, ZHAO Jun1,2, TANG Xiankang1,2, SUN Chao1,2, LI Feng3
摘要: 为分析挖藕机喷水系统各种关键参数对土壤冲击效果的影响,提出一种基于EDEM-Fluent的水射流冲击土壤仿真方法。在Fluent中模拟不同间距、不同喷射速度下多股水射流冲击水层时的速度衰减、方向变化情况;得出冲击水层后的速度后利用EDEM-Fluent耦合模拟射流以该速度冲击土壤1 s的效果。试验结果表明:随着出水管间距的增大,最大冲击深度减小,土壤颗粒速度减小;随着射流喷射速度的增大,最大冲击深度增大,土壤颗粒速度增大。在出水管间距8 mm、射流喷射速度30 m/s时对土壤的冲击效果最好。
中图分类号:
[1] 吴昊.射流自旋式挖藕机工作机理与试验研究[D].武汉:华中农业大学,2018. WU Hao. Study on experimental and working mechanism of jetting spain type digging lotus root machine[D]. Wuhan: Huazhong Agricultural University, 2018. [2] 张耀宏,姜喆雄. 喷流式挖藕机的研制[J].粮油加工, 1982(8):33-38. ZHANG Yaohong, JIANG Zhexiong. Study on jet lotus root digging machine[J]. Cereals and Oils Processing, 1982(8):33-38. [3] 郭洋民.水田莲藕采挖机设计与研究[D]. 武汉:华中农业大学, 2015. GUO Yangmin. The research and design of lotus digging machine for paddy field[D]. Wuhan: Huazhong Agricultural University, 2015. [4] 黄海东,张国忠,夏俊芳,等.4CWO-3.2型船式挖藕机的研制[J].湖北农机化,2008(3):24-25. HUANG Haidong, ZHANG Guozhong, XIA Junfang, et al. Study on 4CWO-3.2 boat-type lotus root digging machine[J]. Hubei Agricultural Mechanization, 2008(3):24-25. [5] 冯闯闯,周勇,涂鸣,等. 螺旋推进式挖藕机的设计与试验[J]. 甘肃农业大学学报, 2020,55(4):191-199. FENG Chuangchuang, ZHOU Yong, TU Ming, et al. Design and experiment of screw-propelled type lotus root digging machine[J]. Journal of Gansu Agricultural University, 2020, 55(4):191-199. [6] 刘向军. 一种新型手扶挖藕机的结构设计与研究[J]. 安徽农业科学, 2018, 46(10):179-182. LIU Xiangjun. Research and design on an automatic walking dig lotus root machine[J]. Journal of Anhui Agricultural Sciences, 2018, 46(10):179-182. [7] 刘鹏, 陶雷, 吕石祥, 等. 液力驱动挖藕机的结构设计[J]. 农机化研究, 2017, 39(1):78-86. LIU Peng, TAO Lei, LÜ Shixiang, et al. The structure design of hydraulic drive lotus root digging machine[J]. Journal of Agricultural Mechanization Research, 2017, 39(1):78-86. [8] 尤俊, 陈斯蓉. 4OZ-3型自走式水压莲藕掘取机[J]. 南方农机, 2000(6):9. YOU Jun, CHEN Sirong. 4OZ-3 self-propelled hydraulic lotus root digging machine[J]. China Southern Agricultural Machinery, 2000(6):9. [9] 程悦荪,金先龙,胡斌祥. 挖藕机断藕率及其影响因素的研究[J]. 农业工程学报, 1986(4):58-68. CHENG Yuesun, JIN Xianlong, HU Binxiang. Study on the breaking rate of lotus root digging machine and its influencing factors[J]. Transactions of the Chinese Society of Agricultural Engineering, 1986(4):58-68. [10] 朱守国. 水压莲藕掘取机液压系统技术难点的解决[J]. 起重运输机械, 2002, 12(12):34-34. ZHU Shouguo. Solution of technical difficulties in hydraulic system of hydraulic lotus root digging machine[J]. Hoisting and Conveying Machinery, 2002, 12(12):34-34. [11] 刘义满,柯卫东,黄新芳.莲藕人工采挖和机械采挖技术[J]. 长江蔬菜, 2014(21):10-15. LIU Yiman, KE Weidong, HUANG Xinfang. Artificial and mechanical excavation techniques of lotus root[J]. Journal of Changjiang Vegetables, 2014(21):10-15. [12] 刘莫尘,毛东炜,王振虎, 等.挖藕技术研究现状及黄河三角洲地区莲藕采收技术前瞻[J]. 农业工程, 2018, 8(5):1-5. LIU Mochen,MAO Dongwei,WANG Zhenhu,et al. Research status of lotus root digging technology and prospect of lotus root harvesting technology in Yellow River delta region[J] Agricultural Engineering, 2018, 8(5):1-5. [13] 王瑜,吴修,马加清,等.山东莲藕产业现状及发展趋势[J]. 中国蔬菜, 2013(3):22-24. WANG Yu, WU Xiu, MA Jiaqing, et al. Present situation and development trend of lotus root industry in Shandong[J]. China Vegetables, 2013(3):22-24. [14] 陈辉,陶雷,陈青,等.基于Fluent的挖藕机喷嘴仿真研究[J]. 电子世界,2016, 496(10):127-128. CHEN Hui, TAO Lei, CHEN Qing, et al. Simulation research on nozzle of lotus root digging machine based on Fluent[J]. Electronics World, 2016, 496(10):127-128. [15] 曹威龙,周扬理,岳吉祥,等. 宽幅挖藕机多喷头出水均匀性仿真分析[J].农业装备与车辆工程,2020, 58(6):30-32. CAO Weilong, ZHOU Yangli, YUE Jixiang, et al. Simulation analysis of flow uniformity at width lotus root digging machine multi-nozzle[J]. Agricultural Equi-pment & Vehicle Engineering, 2020, 58(6):30-32. [16] 何竞飞,陈建庚,王艾伦,等.基于涡流原理的新型挖藕喷头的流场研究[J]. 计算机仿真, 2015, 32(4):184-187. HE Jingfei, CHEN Jiangeng, WANG Ailun, et al. Study on flow field of a new digging lotus based on the vortex theory[J]. Computer Simulation, 2015, 32(4):184-187. [17] 何枫,谢峻石,杨京龙. 喷嘴内部流道型线对射流流场的影响[J]. 应用力学学报, 2001(4):114-119. HE Feng, XIE Junshi, YANG Jinglong. Effect of nozzle geometry on aerodynamics of free jet[J]. Chinese Journal of Applied Mechanics, 2001(4):114-119. [18] 吴楠, 贺俊林, 刘少华, 等. 基于EDEM-Fluent耦合的钙果风筛式清选装置仿真与试验[J].农业工程, 2021, 11(1):82-87. WU Nan, HE Junlin, LIU Shaohua, et al. Simulation and experiment of air screen cleaning device for cerasusnhumilis based on EDEM-Fluent coupling[J]. Agricultural Engineering, 2021, 11(1):82-87. [19] 陈广慧, 李军, 滕杰, 等. 基于EDEM-Fluent耦合的风筛式清选装置仿真及分析[J]. 中国农机化学报, 2020, 41(5):69-73. CHEN Guanghui, LI Jun, TENG Jie, et al. Simulation and analysis of wind screen cleaning device based on EDEM-Fluent coupling[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(5):69-73. [20] 贺一鸣,向伟,吴明亮,等.基于堆积试验的壤土离散元参数的标定[J]. 湖南农业大学学报, 2018, 44(2): 216-220. HE Yiming, XIANG Wei, WU Mingliang, et al. Parameters calibration of loam soil for discrete element simulation based on the repose angle of particle heap[J]. Journal of Hunan Agricultural University, 2018, 44(2):216-220. |
[1] | 张宇磊,王勇,谢玉东,孙光,王艳芸,韩家桢. 新型液态金属磁流体发电动力学特性数值模拟[J]. 山东大学学报 (工学版), 2019, 49(1): 101-106. |
[2] | 李朋,吴华春,崔瑞芳,熊振宇. 过盈配合对磁悬浮转子动力学特性的影响[J]. 山东大学学报(工学版), 2018, 48(2): 94-99. |
[3] | 王汝贵,蔡敢为 . 两自由度可控平面连杆机构机电耦合系统的超谐波共振分析[J]. 山东大学学报(工学版), 2008, 38(3): 58-63 . |
[4] | 员冬玲,邓建新,丁泽良,段振兴 . 梯度陶瓷水煤浆喷嘴的残余热应力有限元分析[J]. 山东大学学报(工学版), 2008, 38(2): 18-22 . |
[5] | 陈正洪,张卧波,王勇,刘同辉,李艳 . 混合输入五杆机构实现给定轨迹的功率分配[J]. 山东大学学报(工学版), 2008, 38(1): 9-12 . |
|