山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (2): 83-89.doi: 10.6040/j.issn.1672-3961.0.2020.246
• • 上一篇
张沁洋,李旭*,姚春龙,李长吾
ZHANG Qinyang, LI Xu*, YAO Chunlong, LI Changwu
摘要: 引入句法依存信息到原方面术语,提出一种新的方面术语表示方法,利用Glove词向量表示单词以及单词与单词之间的依存关系,构造出包含句法依存信息的依存关系邻接矩阵和依存关系表示矩阵,利用图卷积神经网络和多头注意力机制将句法依存信息融入到方面术语中,使得方面术语表达与上下文结构高度相关。将改进后的方面词术语表示替换到现有模型后,模型泛化能力得到有效提升。对比试验和分析结果表明:该方法具有有效性和泛化性。
中图分类号:
[1] WAGNER J, ARORA P, CORTES S, et al. Dcu: aspect-based polarity classification for SemEval task 4[C] //International Conference on Computational Linguistics. Dublin, Ireland: ACL, 2014: 223-229. [2] WANG Y, HUANG M, ZHU X, et al. Attention-based LSTM for aspect-level sentiment classification[C] //Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Austin, USA: ACL, 2016: 606-615. [3] HAZARIKA D, PORIA S, VIJ P, et al. Modeling inter-aspect dependencies for aspect-based sentiment analysis[C] //Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics. New Orleans, USA: NAACL, 2018: 266-270. [4] SCHMITT M, STEINHEBER S, SCHREIBER K, et al. Joint aspect and polarity classification for aspect-based sentiment analysis with end-to-end neural networks[DB/OL].(2018-08-28)[2020-04-15].https://arxiv.org/pdf/1808.09238.pdf. [5] RAN X, PAN Y, SUN W, et al. Learn to select via hierarchical gate mechanism for aspect-based sentiment analysis[C] //Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence Main Track. Macao, China: IJCAI, 2019: 5160-5167. [6] VASANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C] //31st Conference on Neural Information Processing Systems. Long Beach, USA: NIPS, 2017: 5998-6008. [7] SONG Y, WANG J, JIANG T, et al. Targeted Sentiment Classification with Attentional Encoder Network[C] //International Conference on Artificial Neural Networks. Munich, Germany: ICANN, 2019: 93-103. [8] SUN C, HUANG L, QIU X. Utilizing BERT for aspect-based sentiment analysis via constructing auxiliary sentence[DB/OL].(2019-03-22)[2020-04-30].https://arxiv.org/pdf/1903.09588.pdf. [9] DONG L, WEI F, TAN C, et al. Adaptive recursive neural network for target-dependent twitter sentiment classification[C] //Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics(volume 2: Short papers). Baltimore, USA: AMACL, 2014: 49-54. [10] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL].(2017-02-22)[2020-4-30]. https://arxiv.org/pdf/1609.02907.pdf. [11] RAO D, RAVICHANDRAN D. Semi-supervised polarity lexicon induction[C] //Proceedings of the 12th Con-ference of the European Chapter of the ACL. Athens, Greece: ECACL, 2009: 675-682. [12] KIRITCHENKO S, ZHU X, MOHAMMAD S M. Sentiment analysis of short informal texts[J]. Journal of Artificial Intelligence Research, 2014, 50: 723-762. [13] JIANG L, YU M, ZHOU M, et al. Target-dependent twitter sentiment classification[C] //Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: human language technologies. Portland, Oregon: ALACM, 2011: 151-160. [14] TANG D, QIN B, LIU T. Aspect level sentiment classification with deep memory network[DB/OL].(2016-09-24)[2020-04-30]. https://arxiv.org/pdf/1605.08900.pdf. [15] TAY Y, LUU A T, HUI S C. Learning to attend via word-aspect associative fusion for aspect-based sentiment analysis[DB/OL].(2017-12-14)[2020-4-30]. https://arxiv.org/pdf/1712.05403.pdf. [16] XING B, LIAO L, SONG D, et al. Earlier attention? aspect-aware LSTM for aspect-based sentiment analysis[DB/OL].(2019-07-07)[2020-04-20]. https://arxiv.org/pdf/1905.07719.pdf. [17] HE R, LEE W S, NG H T, et al. Effective attention modeling for aspect-level sentiment classification[C] //Proceedings of the 27th International Conference on Computational Linguistics. Santa Fe, New Mexico: ICCL, 2018: 1121-1131. [18] SUN K, ZHANG R, MENSAH S, et al. Aspect-level sentiment analysis via convolution over dependency tree[C] //Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong, China: JCNLP, 2019: 5683-5692. [19] PENNINGTON J, SOCHER R, MANNING C D. Glove: Global vectors for word representation[C] //Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar: EMNLP, 2014: 1532-1543. [20] PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. SemEval-2014 task 4: aspect based sentiment analysis[C] //International Conference on Computational Linguistics. Doha, Qatar: EMNLP, 2014: 27-35. [21] KIRITCHENKO S, ZHU X, CHERRY C, et al. NRC-Canada-2014: detecting aspects and sentiment in customer reviews[C] //Proceedings of the 8th International Workshop on Semantic Evaluation. Dublin, Ireland: SemEval, 2014: 437-442. [22] MA D, LI S, ZHANG X, et al. Interactive attention networks for aspect-level sentiment classification[DB/OL].(2017-09-04)[2020-04-30]. https://arxiv.org/abs/1709.00893. [23] LI X, CHANG D, TIAN T, et al. Large-margin regularized softmax cross-entropy loss[J]. IEEE Access, 2019, 7: 19572-19578. [24] KINGMA D P, BA J. Adam: a method for stochastic optimization[DB/OL].(2015-07-23)[2020-04-30]. https://arxiv.org/pdf/1412.6980v8. [25] DEVLIN J, CHANG M W, LEE K, et al. Bert: pre-training of deep bidirectional transformers for language understanding[DB/OL].(2019-05-09)[2020-04-30]. https://arxiv.org/pdf/1810.04805.pdf. |
[1] | 张俊三,程俏俏,万瑶,朱杰,张世栋. MIRGAN:一种基于GAN的医学影像报告生成模型[J]. 山东大学学报 (工学版), 2021, 51(2): 9-18. |
[2] | 张月芳,邓红霞,呼春香,钱冠宇,李海芳. 融合残差块注意力机制和生成对抗网络的海马体分割[J]. 山东大学学报 (工学版), 2020, 50(6): 76-81. |
[3] | 廖南星,周世斌,张国鹏,程德强. 基于类激活映射-注意力机制的图像描述方法[J]. 山东大学学报 (工学版), 2020, 50(4): 28-34. |
[4] | 蔡国永,贺歆灏,储阳阳. 基于空间注意力和卷积神经网络的视觉情感分析[J]. 山东大学学报 (工学版), 2020, 50(4): 8-13. |
|