山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (4): 35-39.doi: 10.6040/j.issn.1672-3961.0.2019.679
• • 上一篇
刘帅1,2,王磊1,2*,丁旭涛1,2
LIU Shuai1,2, WANG Lei1,2*, DING Xutao1,2
摘要: 为解决脑电(electroencephalogram, EEG)情绪识别这一项具有挑战性的任务,提出一种基于双向长短时记忆网络(bidirectional long short-term memory, Bi-LSTM)的脑电情绪分类模型并探索大脑情绪机制,唤醒度准确率最高为76.78%,效价度准确率最高为77.28%,与其他模型比较,Bi-LSTM模型在脑电情绪识别上有出色的表现。通过Bi-LSTM模型对比不同频段、脑区和特征疏密度的准确率来探索大脑情绪机制,表明大脑中情绪相关性最高的频段、脑区和特征疏密度分别为α和β、顶叶区与额叶区、50和15。
中图分类号:
[1] 乔建中. 情绪研究: 理论与方法[M]. 南京:南京师范大学出版社, 2003:1-10. [2] YANG X, LIU J, CHEN Z, et al. Semi-supervised learning of dialogue acts using sentence similarity based on word embeddings[C] // International Conference on Audio. Shanghai, China:IEEE, 2015:882-886. [3] ADEYANJU I A, OMIDIORA E O, OYEDOKUN O F. Performance evaluation of different support vector machine kernels for face emotion recognition[C] //SAI Intelligent Systems Conference 2015. London, UK:IEEE, 2015:804-806. [4] 聂聃, 段若男. 基于脑电的情绪识别研究综述[J]. 中国生物医学工程学报, 2012, 31(4):595-606. NIE Dan, DUAN Ruonan. A survey on EEG based emotion recognition[J].Chinese Journal of Biomedical Engineering, 2012, 31(4):595-606. [5] QIAO R, QING C, ZHANG T, et al. A novel deep-learning based framework for multi-subject emotion recognition[C] //International Conference on Information. Dalian, China:IEEE, 2017:181-185. [6] 阚威, 李云. 基于LSTM的脑电情绪识别模型[J]. 南京大学学报(自然科学), 2019, 55(1):116-122. KAN Wei, LI Yun. Emotion recognition from EEG signals by using LSTM recurrent neural networks[J]. Journal of Nanjing University(Natural Sciences), 2019, 55(1):116-122. [7] SONG T, ZHENG W, SONG P, et al. EEG emotion recognition using dynamical graph convolutional neural networks[J]. IEEE Transactions on Affective Computing, 2018(99):1-10. [8] LI X, SONG D, ZHANG P, et al. Emotion recognition from multi-channel EEG data through convolutional recurrent neural network[C] //2016 IEEE International Conference on Bioinformatics and Biomedicine(BIBM). Shenzhen, China:IEEE, 2016:352-359. [9] (¨overO)ZAL YILDIRIM. A novel wavelet sequences based on deep bidirectional LSTM network model for ECG signal classification[J]. Computers in Biology & Medicine, 2018, 96(1):189-202. [10] ADAM K, SMAGULOVA K, JAMES A P. Memristive LSTM network hardware architecture for time-series predictive modeling problem[C] //2018 IEEE Asia Pacific Conference on Circuits and Systems(APCCAS). Chengdu, China:IEEE, 2018:459-462. [11] KOELSTRA S, MUHL C, SOLEYMANI M, et al. DEAP: a database for emotion analysis using physiological signals[J]. IEEE Transactions on Affective Computing, 2012, 3(1):18-31. [12] MURRAY I R, ARNOTT J L. Toward the simulation of emotion in synthetic speech: a review of the literature on human vocal emotion[J]. The Journal of the Acoustical Society of America, 1993, 93(2):1097-1108. [13] KONG W, DONG Z Y, JIA Y, et al. Short-Term residential load forecasting based on LSTM recurrent neural network[J]. IEEE Transactions on Smart Grid, 2018(10):841-851. [14] HOW D N T, SAHARI K S M, HU Y, et al. Multiple sequence behavior recognition on humanoid robot using long short-term memory(LSTM)[C] //IEEE International Symposium on Robotics & Manufacturing Automation. Kuala Lumpur, Malaysia: IEEE, 2014: 109-114. [15] XIAO R, CUI X, ZHOU P, et al. LSTM based on the classification of emotion about user evaluation on shopping site[C] //2016 International Conference on Identification, Information and Knowledge in the Internet of Things(IIKI). Beijing, China:IEEE, 2016:52-53. [16] DAIMI S N, SAHA G. Classification of emotions induced by music videos and correlation with participants, rating[J]. Expert Systems with Applications, 2014, 41(13): 6057-6065. [17] MERT A, AKAN A. Emotion recognition from EEG signals by using multivariate empirical mode decomposition[J]. Pattern Analysis and Applications, 2016, 21(1):81-89. [18] GUPTA R, LAGHARI K U R, FALK T H. Relevance vector classifier decision fusion and EEG graph-theoretic features for automatic affective state characterization[J]. Neurocomputing, 2016, 174(2):875-884. [19] ATKINSON J, CAMPOS D. Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers[J]. Expert Systems with Applications, 2016, 47(1):35-41. |
[1] | 蔡国永, 贺歆灏, 储阳阳. 基于空间注意力和卷积神经网络的视觉情感分析[J]. 山东大学学报 (工学版), 2020, 50(4): 8-13. |
[2] | 李春阳,李楠,冯涛,王朱贺,马靖凯. 基于深度学习的洗衣机异常音检测[J]. 山东大学学报 (工学版), 2020, 50(2): 108-117. |
[3] | 陈德蕾,王成,陈建伟,吴以茵. 基于门控循环单元与主动学习的协同过滤推荐算法[J]. 山东大学学报 (工学版), 2020, 50(1): 21-27,48. |
[4] | 张继,金翠,王洪元,陈首兵. 基于奇异值分解行人对齐网络的行人重识别[J]. 山东大学学报 (工学版), 2019, 49(5): 91-97. |
[5] | 万鹏. 基于F-PointNet的3D点云数据目标检测[J]. 山东大学学报 (工学版), 2019, 49(5): 98-104. |
[6] | 梁志祥,刘晓明,牟颖,刘玉田. 基于深度学习的新能源爬坡事件预测方法[J]. 山东大学学报 (工学版), 2019, 49(5): 24-28. |
[7] | 刘玉田, 孙润稼, 王洪涛, 顾雪平. 人工智能在电力系统恢复中的应用综述[J]. 山东大学学报 (工学版), 2019, 49(5): 1-8. |
[8] | 李力钊,蔡国永,潘角. 基于C-GRU的微博谣言事件检测方法[J]. 山东大学学报 (工学版), 2019, 49(2): 102-106, 115. |
[9] | 张成彬,赵慧,曹宗钰. 基于深度学习的车身网络KWP2000协议漏洞挖掘[J]. 山东大学学报 (工学版), 2019, 49(2): 17-22. |
[10] | 侯霄雄,许新征,朱炯,郭燕燕. 基于AlexNet和集成分类器的乳腺癌计算机辅助诊断方法[J]. 山东大学学报 (工学版), 2019, 49(2): 74-79. |
[11] | 谢志峰,吴佳萍,马利庄. 基于卷积神经网络的中文财经新闻分类方法[J]. 山东大学学报(工学版), 2018, 48(3): 34-39. |
[12] | 唐乐爽,田国会,黄彬. 一种基于DSmT推理的物品融合识别算法[J]. 山东大学学报(工学版), 2018, 48(1): 50-56. |
[13] | 周福娜,高育林,王佳瑜,文成林. 基于深度学习的缓变故障早期诊断及寿命预测[J]. 山东大学学报(工学版), 2017, 47(5): 30-37. |
[14] | 李庆宾,王晓东. 分数阶情绪模型的终端滑模控制混沌同步[J]. 山东大学学报(工学版), 2017, 47(3): 84-88. |
[15] | 郝崇清,王志宏. 基于复杂网络的癫痫脑电分类与分析[J]. 山东大学学报(工学版), 2017, 47(3): 8-15. |
|