山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (3): 38-44.doi: 10.6040/j.issn.1672-3961.0.2019.413
Keyang CHENG1,2(),Shuang SUN1,Yongzhao ZHAN1
摘要:
针对自适应敏感度分割(self-balanced sensitivity segmenter, SuBSENSE)算法在真实复杂场景下距离阈值更新适应性差,导致检测效果不佳的问题,提出一种基于背景复杂度自适应距离阈值修正的SuBSENSE算法。结合时间一致性和空间一致性定义了一种背景复杂度的度量方式,以此为标准,通过距离阈值修正策略获取准确的距离阈值,以便获得更好的检测效果。本算法与像素自适应分割(based adaptive segmenter,PBAS)算法和传统SuBSENSE算法进行了对比。试验表明,在动态场景下,本算法获取的前景更加精确,精度比PBAS算法和传统SuBSENSE算法提高了6.70%和0.80%,召回率比PBAS算法和传统SuBSENSE算法分别提高了9.37%和1.24%。本算法优于对比算法,在动态场景下具有更高的鲁棒性和检测精度。
中图分类号:
1 | JAIN R , NAGEL H H . On the analysis of accumulative difference pictures from image sequences of real world scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1978, PAMI-1 (2): 206- 214. |
2 | BARRON J L , FLEET D J , BEAUCHEMIN S S , et al. Performance of optical flow techniques[J]. International Journal of Computer Vision, 1994, 12 (1): 43- 77. |
3 |
BEAUGENDRE A , GOTO S . Block-propagative background subtraction system for UHDTV videos[J]. IPSJ Transactions on Computer Vision and Applications, 2015, 7, 31- 34.
doi: 10.2197/ipsjtcva.7.31 |
4 | MAITY S, CHAKRABARTI A, BHATTACHARJEE D. Block-based quantized histogram (BBQH) for efficient background modeling and foreground extraction in video[C]//2017 Inter-national Conference on Data Management, Analytics and Innovation. Pune, India: IEEE, 2017: 224-229. |
5 |
BARNICH O , VAN D M . ViBe: a universal background subtraction algorithm for video sequences[J]. IEEE Transactions on Image Processing, 2011, 20 (6): 1709- 1724.
doi: 10.1109/TIP.2010.2101613 |
6 | 惠开发, 成科扬, 詹永照. 基于改进ViBe算法的视频浓缩[J]. 山东大学学报(工学版), 2017, 47 (3): 43- 48. |
HUI Kaifa , CHENG Keyang , ZHAN Yongzhao . The video sy-nopsis based on the enhanced ViBe algorithm[J]. Journal of Shandong University (Engineering Science), 2017, 47 (3): 43- 48. | |
7 | HOFMANN M, TIEFENBACHER P, RIGOLL G. Backg-round segmentation with feedback: the pixel-based adaptive segmenter[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. New York, USA: IEEE, 2012: 38-43. |
8 | ST-CHARLES P L, BILODEAU G A. Improving background subtraction using local binary similarity patterns[C]// 2014 IEEE Winter Conference on Applications of Computer Vision. Steamboat Springs, USA: IEEE, 2014: 509-515. |
9 | 陈树, 丁保阔. 动态背景下自适应LOBSTER算法的前景检测[J]. 中国图象图形学报, 2017, 22 (2): 161- 169. |
CHEN Shu , DING Baokuo . Foreground detection of the adaptive LOBSTER algorithm in a dynamic background[J]. Journal of Image and Graphics, 2017, 22 (2): 161- 169. | |
10 |
杨丹, 戴芳. 运动目标检测的ViBe算法改进[J]. 中国图象图形学报, 2018, 23 (12): 1813- 1828.
doi: 10.11834/jig.180304 |
YANG Dan , DAI Fang . Improvement of ViBe algorithm for moving target detection[J]. Journal of Image and Graphics, 2018, 23 (12): 1813- 1828.
doi: 10.11834/jig.180304 |
|
11 | GUO Lili, XU Dan, QIANG Zhenping. Background subtraction using local svd binary pattern[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Las Vegas, USA: IEEE, 2016. |
12 |
ST-CHARLES P L , BILODEAU G A , BERGEVIN R . SuBSENSE: a universal change detection method with local adaptive sensitivity[J]. IEEE Transactions on Image Processing, 2015, 24 (1): 359- 373.
doi: 10.1109/TIP.2014.2378053 |
13 | 李静, 刘清, 颜为朗. 基于SuBSENSE的内河船舶检测波纹干扰抑制算法[J]. 交通信息与安全, 2017, 35 (2): 30- 34. |
LI Jing , LIU Qing , YAN Weilang . An algorithm for ripple suppression of inland ship detection based on SuBSENSE[J]. Journal of Transport Information and Safety, 2017, 35 (2): 30- 34. | |
14 | ST-CHARLES P L, BILODEAU G A, BERGEVIN R. A self-adjusting approach to change detection based on background word consensus[C]//2015 IEEE Winter Conference on Applications of Computer Vision. Waikoloa HI, USA: IEEE, 2015: 990-997. |
15 |
ST-CHARLES P L , BILODEAU G A , BERGEVIN R . Universal background subtraction using word consensus models[J]. IEEE Transactions on Image Processing, 2016, 25 (10): 4768- 4781.
doi: 10.1109/TIP.2016.2598691 |
16 | LUO Huaiye, LI Bo, ZHOU Zhiheng. Improved background subtraction based on word consensus models[C]//2017 International Symposium on Intelligent Signal Processing and Communication Systems. Xiamen, China: IEEE, 2017: 689-694. |
17 | 汪荣琪, 郑林, 王标. 基于改进的PBAS算法的前景目标检测[J]. 计算机科学, 2017, 44 (5): 294- 298. |
WANG Rongqi , ZHENG Lin , WANG Biao . Foreground object detection based on improved PBAS[J]. Computer Science, 2017, 44 (5): 294- 298. | |
18 |
钟忺, 汪梦, 张倩, 等. 一种基于纹理和颜色置信融合的运动目标检测方法[J]. 计算机应用研究, 2017, 34 (7): 2196- 2201.
doi: 10.3969/j.issn.1001-3695.2017.07.060 |
ZHONG Wei , WANG Meng , ZHANG Qian , et al. Moving object detection by fusing texture and color features with confidence[J]. Application Research of Computers, 2017, 34 (7): 2196- 2201.
doi: 10.3969/j.issn.1001-3695.2017.07.060 |
|
19 | WANG Yi, JODOIN P M, PORIKL F, et al. CDnet2014: an expanded change detection benchmark dataset[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Columbus, USA: IEEE, 2014. |
20 | 郭丽丽.面向复杂场景的运动目标检测技术研究[D].昆明:云南大学, 2017. |
GUO Lili. Research on techniques of moving object detection under complex environment[D]. Kunming: Yunnan University, 2017. |
[1] | 田枫,李欣,刘芳,李闯,孙小强,杜睿山. 基于多模态子空间学习的语义标签生成方法[J]. 山东大学学报 (工学版), 2020, 50(3): 31-37, 44. |
[2] | 马金平. 基于UART串口的多机通讯[J]. 山东大学学报 (工学版), 2020, 50(3): 24-30. |
[3] | 袁高腾,刘毅慧,黄伟,胡兵. 基于Gabor特征的乳腺肿瘤MR图像分类识别模型[J]. 山东大学学报 (工学版), 2020, 50(3): 15-23. |
[4] | 段江丽,胡新. 自然语言问答中的语义关系识别[J]. 山东大学学报 (工学版), 2020, 50(3): 1-7. |
[5] | 严云洋,杜晨锡,刘以安,高尚兵. 基于轻型卷积神经网络的火焰检测方法[J]. 山东大学学报 (工学版), 2020, 50(2): 100-107. |
[6] | 张胜男,王雷,常春红,郝本利. 基于三维剪切波变换和BM4D的图像去噪方法[J]. 山东大学学报 (工学版), 2020, 50(2): 83-90. |
[7] | 胡龙茂,胡学钢. 基于多维相似度和情感词扩充的相同产品特征识别[J]. 山东大学学报 (工学版), 2020, 50(2): 50-59. |
[8] | 陈艳平,冯丽,秦永彬,黄瑞章. 一种基于深度神经网络的句法要素识别方法[J]. 山东大学学报 (工学版), 2020, 50(2): 44-49. |
[9] | 闫威,张达敏,张绘娟,辛梓芸,陈忠云. 基于混合决策的改进鸟群算法[J]. 山东大学学报 (工学版), 2020, 50(2): 34-43. |
[10] | 宋士奇,朴燕,蒋泽新. 基于改进YOLOv3的复杂场景车辆分类与跟踪[J]. 山东大学学报 (工学版), 2020, 50(2): 27-33. |
[11] | 陈宁宁,赵建伟,周正华. 基于校正神经网络的视频追踪算法[J]. 山东大学学报 (工学版), 2020, 50(2): 17-26. |
[12] | 赵越男,陈桂友,孙琛,卢宁,廖立伟. 基于空间隐患分布与运动意图解析的危险评估方法[J]. 山东大学学报 (工学版), 2020, 50(1): 28-34. |
[13] | 苏佳林,王元卓,靳小龙,程学旗. 自适应属性选择的实体对齐方法[J]. 山东大学学报 (工学版), 2020, 50(1): 14-20. |
[14] | 蔡国永,林强,任凯琪. 基于域对抗网络和BERT的跨领域文本情感分析[J]. 山东大学学报 (工学版), 2020, 50(1): 1-7,20. |
[15] | 姚元玺. 基于分场景重构的风电汇聚趋势性量化方法[J]. 山东大学学报 (工学版), 2019, 49(6): 86-92. |
|