山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (2): 10-16.doi: 10.6040/j.issn.1672-3961.0.2019.318
摘要:
目前基于互联网各类图像以及人工智能应用对图像数据质量较为敏感,但由于采集设备以及传输方式限制,导致图像质量受到非常严重影响,为了弥补图像数据质量损失和增强图像效果,提出一种并行交错上下采样网络(parallel interlaced up and down sampling network, PSUDN)作为一个解决该问题的更好的方案,利用并行的高分辨特征(high resolution feature, HR_Feature)和低分辨特征(low resolution feature, LR_Feature),交错进行采样生成高级特征图,通过构建并行的高分辨率特征模块和低分辨率特征模块提升输出的高分辨率图片的质量。通过并行的上采样和下采样,构建的模型可以重建8倍的高分辨率图片,并达到当前较好的效果。
中图分类号:
1 |
AGHAJAN H K , KAILATH T . Sensor array processing techniques for super resolution multi-line-fitting and straight edge detection[J]. IEEE Transactions on Image Processing a Publication of the IEEE Signal Processing Society, 1993, 2 (4): 454- 65.
doi: 10.1109/83.242355 |
2 | GERCHBERG R . Super-resolution through error energy reduction[J]. J Modern Optics, 1974, 21 (9): 709- 720. |
3 | GLASNER D, BAGON S, IRANI M. Super-resolution from a single image[C]//2009 IEEE 12th International Conference on Computer Vision (ICCV). Maimi, USA: IEEE, 2009. |
4 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2015. |
5 |
KAPPELER A , YOO S , DAI Q , et al. Video super-resolution with convolutional neural networks[J]. IEEE Transactions on Computational Imaging, 2016, 2 (2): 109- 122.
doi: 10.1109/TCI.2016.2532323 |
6 |
MUHAMMAD H , RAHMAT W M , HAJIME N . Inception learning super-resolution[J]. Applied Optics, 2017, 56 (22): 6043- 6053.
doi: 10.1364/AO.56.006043 |
7 | SHI W, CABALLERO J, HUSZAR, FERENC, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]// Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016. |
8 | LAI W S, HUANG J B, AHUJA N, et al. Deep Laplacian pyramid networks for fast and accurate super-resolution[C]// Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017. |
9 | TAI Y, YANG J, LIU X. Image super-resolution via deep recursive residual network[C]// IEEE Computer Vision and Pattern Recognition (CVPR 2017). Honolulu, USA: IEEE, 2017. |
10 | DONG C , LOY C C , HE K , et al. Image super-resolution using deep convolutional networks[J]. IEEE Trans Pattern Anal Mach Intell, 2014, 38 (2): 295- 307. |
11 | KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2015. |
12 | KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution[C]//Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2015. |
13 | DONG C, LOY C C, TANG X. Accelerating the super-resolution convolutional neural network[C]//ECCV2016 14th European Conference. Amsterdam, the Netherlands: ECCV, 2016. |
14 | LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops(CVPRW). Honolulu, USA: IEEE, 2017. |
15 | MAO X J, SHEN C, YANG Y B. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections[C]//Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems. Barcelona, Spain: NIPS, 2016. |
16 | BLAU Yochai, MICHAELI Tomer. The perception-distortion tradeoff[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake, USA: IEEE, 2018. |
17 | TAI Y, YANG J, LIU X. Image super-resolution via deep recursive residual network[C]//IEEE Computer Vision and Pattern Recognition (CVPR 2017). Honolulu, USA: IEEE, 2017. |
18 | LIU P, ZHANG H, ZHANG K, et al. Multi-level wavelet-CNN for image restoration[C]//IEEE 2018 Conference on Computer Vision and Pattern Recognition Workshops. Honolulu, USA: IEEE, 2018. |
19 |
IRANI M , PELEG S . Motion analysis for image enhancement: resolution, occlusion, and transparency[J]. Journal of Visual Communication and Image Representation, 1993, 4 (4): 324- 335.
doi: 10.1006/jvci.1993.1030 |
20 |
WANG Z , BOVIK A C , SHEIKH H R , et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13 (4): 600- 612.
doi: 10.1109/TIP.2003.819861 |
21 | DENG Ruoxi , LIU Shengjun . Relative depth order estimation using multi-scale densely connected convolutional networks densely connected convolutional networks[J]. IEEE, 2019, 7 (1): 38630- 38643. |
22 | SZEGEDY C , LIU W , JIA Y , et al. Going deeper with convolutions[J]. CoRR, 2014, 2 (1): 1409- 1420. |
23 | AGUSTSSON E, TIMOFTE R. NTIRE 2017 challenge on single image super-resolution: dataset and study[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Honolulu, USA: IEEE, 2017. |
24 |
KIM K I , KWON Y . Single-image super-resolution using sparse regression and natural image prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32 (6): 1127- 1133.
doi: 10.1109/TPAMI.2010.25 |
25 | ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations[C]//Curves and Surfaces 7th International Conference, 2010. Avignon, France: Springer, 2012. |
26 | MARTIN D R , FOWLKES C , TAL D , et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[J]. Proceedings of the Eighth International Conference On Computer Vision, 2001, 2 (11): 416- 423. |
27 | HUANG J B, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars[C]//IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015. |
28 | KANNAN A, YOUNG P, RAMAVAJJALA V, et al. Smart reply: automated response suggestion for email[C]//22nd ACM SIGKDD International Conference. San Francisco, USA: ACM, 2016. |
29 |
RAMAKRISHNAN B , RAO S S . A general loss function based optimization procedure for robust design[J]. Engineering Optimization, 1996, 25 (4): 255- 276.
doi: 10.1080/03052159608941266 |
30 |
ALZATE C , SUYKENS J Kernel . Component analysis using an epsilon-insensitive robust loss function[J]. IEEE Transactions on Neural Networks, 2008, 19 (9): 1583- 1598.
doi: 10.1109/TNN.2008.2000443 |
[1] | 黄彩云,陈德武,何吉福,胡艺,王楠,陈沛. 基于改进双路径网络的上肢肌肉骨骼异常检测[J]. 山东大学学报 (工学版), 2022, 52(3): 25-33. |
[2] | 蒋桐雨, 陈帆, 和红杰. 基于非对称U型金字塔重建的轻量级人脸超分辨率网络[J]. 山东大学学报 (工学版), 2022, 52(1): 1-8. |
[3] | 张月芳,邓红霞,呼春香,钱冠宇,李海芳. 融合残差块注意力机制和生成对抗网络的海马体分割[J]. 山东大学学报 (工学版), 2020, 50(6): 76-81. |
[4] | 黄劲潮. 深度残差特征与熵能量优化运动目标跟踪算法[J]. 山东大学学报 (工学版), 2019, 49(4): 14-23. |
[5] | 颜子夜,陆耀,李建武,马跃. 一种基于核主成分分析的图像超分辨率算法[J]. 山东大学学报(工学版), 2011, 41(4): 101-105. |
[6] | 浦剑1 ,张军平1 ,黄华2 . 超分辨率算法研究综述[J]. 山东大学学报(工学版), 2009, 39(1): 27-32. |
|