您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (2): 10-16.doi: 10.6040/j.issn.1672-3961.0.2019.318

• 机器学习与数据挖掘 • 上一篇    下一篇

一种使用并行交错采样进行超分辨的方法

朱安1(),徐初2   

  1. 1. 南京大学软件学院,江苏 南京 210000
    2. 南京大学信息化建设管理服务中心, 江苏 南京 210000
  • 收稿日期:2019-06-20 出版日期:2020-04-20 发布日期:2020-04-16
  • 作者简介:朱安(1990—),男,江苏无锡人,硕士研究生,主要研究方向为人工智能、深度学习. E-mail:ifzhuan@gmail.com

Method for super-resolution using parallel interlaced sampling

An ZHU1(),Chu XU2   

  1. 1. Software Institute, Nanjing University, Nanjing 210000, Jiangsu, China
    2. Information Construction Management Service Center, Nanjing University Information Construction Management Service Center, Nanjing 210000, Jiangsu, China
  • Received:2019-06-20 Online:2020-04-20 Published:2020-04-16

摘要:

目前基于互联网各类图像以及人工智能应用对图像数据质量较为敏感,但由于采集设备以及传输方式限制,导致图像质量受到非常严重影响,为了弥补图像数据质量损失和增强图像效果,提出一种并行交错上下采样网络(parallel interlaced up and down sampling network, PSUDN)作为一个解决该问题的更好的方案,利用并行的高分辨特征(high resolution feature, HR_Feature)和低分辨特征(low resolution feature, LR_Feature),交错进行采样生成高级特征图,通过构建并行的高分辨率特征模块和低分辨率特征模块提升输出的高分辨率图片的质量。通过并行的上采样和下采样,构建的模型可以重建8倍的高分辨率图片,并达到当前较好的效果。

关键词: 超分辨, 残差网络, 并行采样网络, 图像重建

Abstract:

Various Internet-based images and artificial intelligence applications were more sensitive to the quality of image data. The image quality had been seriously affected due to the limitations of previous acquisition equipment and transmission methods. In order to compensate for the loss of image data quality and enhance the image effect, a parallel interlaced up and down sampling network (PSUDN) was proposed as a better solution to this problem, which using parallel high resolution feature (HR Feature) and low resolution feature (LR Feature) interleaving sample to generated advanced feature maps, and improved the quality of the output high-resolution pictures by building parallel high resolution feature modules and low resolution feature modules. The model constructed by parallel upsampling and downsampling could reconstruct 8 times high resolution pictures and achieved better results.

Key words: DCNN, super resolution, residual network, parallel interlaced, rebuild high quality high resolution images

中图分类号: 

  • TP319

图1

PSUDN网络结构图"

图2

并行交错上下采样单元"

表1

定量评估算法性能[scale factors 2x, 4x and 8x]"

算法 比例 SET5 SET14 BSDS100 URBAN100 MANGA109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Bicubic 2 33.650 0.930 30.340 0.870 29.560 0.844 26.880 0.841 30.840 0.935
VDSR 2 37.530 0.958 32.970 0.913 31.900 0.896 30.770 0.914 37.160 0.974
DRCN 2 37.630 0.959 32.980 0.913 31.850 0.894 30.760 0.913 37.570 0.973
LapSRN 2 37.520 0.959 33.080 0.922 31.800 0.895 30.410 0.910 37.270 0.974
EDSR 2 38.110 0.960 33.920 0.919 33.320 0.901 32.930 0.935 39.100 0.977
PSUDN(Ours) 2 38.130 0.961 33.950 0.919 23.370 0.910 32.900 0.928 39.420 0.977
Bicubic 4 28.420 0.810 26.100 0.704 25.960 0.669 23.150 0.659 24.920 0.789
VDSR 4 31.350 0.882 28.030 0.770 27.290 0.726 25.180 0.753 28.820 0.886
DRCN 4 31.530 0.884 28.040 0.770 27.240 0.724 25.140 0.752 28.970 0.886
LapSRN 4 31.540 0.885 28.190 0.772 27.320 0.728 25.210 0.756 29.090 0.890
EDSR 4 32.460 0.897 28.800 0.788 27.710 0.742 26.630 0.803 31.020 0.915
PSUDN(Ours) 4 32.490 0.899 28.810 0.791 27.710 0.742 26.800 0.810 31.510 0.917
Bicubic 8 24.390 0.657 23.190 0.568 23.670 0.547 20.740 0.515 21.470 0.649
VDSR 8 25.720 0.711 24.210 0.609 24.370 0.576 21.540 0.560 22.830 0.707
LapSRN 8 26.140 0.738 24.440 0.623 24.540 0.586 21.810 0.581 23.390 0.735
EDSR 8 26.970 0.775 24.940 0.640 24.800 0.596 22.470 0.620 24.580 0.778
PSUDN(Ours) 8 27.150 0.779 25.010 0.643 24.880 0.601 22.450 0.622 25.030 0.781

图3

试验对比[4x upscaling]"

表2

损失函数的定量比较"

数据集 Loss PSNR SSIM Training epochs
DIV2K L1 26.680 0.714 10 000
DIV2K L2 26.200 0.703 10 000
DIV2K Charbinnier 26.830 0.719 10 000
1 AGHAJAN H K , KAILATH T . Sensor array processing techniques for super resolution multi-line-fitting and straight edge detection[J]. IEEE Transactions on Image Processing a Publication of the IEEE Signal Processing Society, 1993, 2 (4): 454- 65.
doi: 10.1109/83.242355
2 GERCHBERG R . Super-resolution through error energy reduction[J]. J Modern Optics, 1974, 21 (9): 709- 720.
3 GLASNER D, BAGON S, IRANI M. Super-resolution from a single image[C]//2009 IEEE 12th International Conference on Computer Vision (ICCV). Maimi, USA: IEEE, 2009.
4 HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2015.
5 KAPPELER A , YOO S , DAI Q , et al. Video super-resolution with convolutional neural networks[J]. IEEE Transactions on Computational Imaging, 2016, 2 (2): 109- 122.
doi: 10.1109/TCI.2016.2532323
6 MUHAMMAD H , RAHMAT W M , HAJIME N . Inception learning super-resolution[J]. Applied Optics, 2017, 56 (22): 6043- 6053.
doi: 10.1364/AO.56.006043
7 SHI W, CABALLERO J, HUSZAR, FERENC, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]// Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016.
8 LAI W S, HUANG J B, AHUJA N, et al. Deep Laplacian pyramid networks for fast and accurate super-resolution[C]// Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017.
9 TAI Y, YANG J, LIU X. Image super-resolution via deep recursive residual network[C]// IEEE Computer Vision and Pattern Recognition (CVPR 2017). Honolulu, USA: IEEE, 2017.
10 DONG C , LOY C C , HE K , et al. Image super-resolution using deep convolutional networks[J]. IEEE Trans Pattern Anal Mach Intell, 2014, 38 (2): 295- 307.
11 KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2015.
12 KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution[C]//Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2015.
13 DONG C, LOY C C, TANG X. Accelerating the super-resolution convolutional neural network[C]//ECCV2016 14th European Conference. Amsterdam, the Netherlands: ECCV, 2016.
14 LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops(CVPRW). Honolulu, USA: IEEE, 2017.
15 MAO X J, SHEN C, YANG Y B. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections[C]//Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems. Barcelona, Spain: NIPS, 2016.
16 BLAU Yochai, MICHAELI Tomer. The perception-distortion tradeoff[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake, USA: IEEE, 2018.
17 TAI Y, YANG J, LIU X. Image super-resolution via deep recursive residual network[C]//IEEE Computer Vision and Pattern Recognition (CVPR 2017). Honolulu, USA: IEEE, 2017.
18 LIU P, ZHANG H, ZHANG K, et al. Multi-level wavelet-CNN for image restoration[C]//IEEE 2018 Conference on Computer Vision and Pattern Recognition Workshops. Honolulu, USA: IEEE, 2018.
19 IRANI M , PELEG S . Motion analysis for image enhancement: resolution, occlusion, and transparency[J]. Journal of Visual Communication and Image Representation, 1993, 4 (4): 324- 335.
doi: 10.1006/jvci.1993.1030
20 WANG Z , BOVIK A C , SHEIKH H R , et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13 (4): 600- 612.
doi: 10.1109/TIP.2003.819861
21 DENG Ruoxi , LIU Shengjun . Relative depth order estimation using multi-scale densely connected convolutional networks densely connected convolutional networks[J]. IEEE, 2019, 7 (1): 38630- 38643.
22 SZEGEDY C , LIU W , JIA Y , et al. Going deeper with convolutions[J]. CoRR, 2014, 2 (1): 1409- 1420.
23 AGUSTSSON E, TIMOFTE R. NTIRE 2017 challenge on single image super-resolution: dataset and study[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Honolulu, USA: IEEE, 2017.
24 KIM K I , KWON Y . Single-image super-resolution using sparse regression and natural image prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32 (6): 1127- 1133.
doi: 10.1109/TPAMI.2010.25
25 ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations[C]//Curves and Surfaces 7th International Conference, 2010. Avignon, France: Springer, 2012.
26 MARTIN D R , FOWLKES C , TAL D , et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[J]. Proceedings of the Eighth International Conference On Computer Vision, 2001, 2 (11): 416- 423.
27 HUANG J B, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars[C]//IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015.
28 KANNAN A, YOUNG P, RAMAVAJJALA V, et al. Smart reply: automated response suggestion for email[C]//22nd ACM SIGKDD International Conference. San Francisco, USA: ACM, 2016.
29 RAMAKRISHNAN B , RAO S S . A general loss function based optimization procedure for robust design[J]. Engineering Optimization, 1996, 25 (4): 255- 276.
doi: 10.1080/03052159608941266
30 ALZATE C , SUYKENS J Kernel . Component analysis using an epsilon-insensitive robust loss function[J]. IEEE Transactions on Neural Networks, 2008, 19 (9): 1583- 1598.
doi: 10.1109/TNN.2008.2000443
[1] 黄彩云,陈德武,何吉福,胡艺,王楠,陈沛. 基于改进双路径网络的上肢肌肉骨骼异常检测[J]. 山东大学学报 (工学版), 2022, 52(3): 25-33.
[2] 蒋桐雨, 陈帆, 和红杰. 基于非对称U型金字塔重建的轻量级人脸超分辨率网络[J]. 山东大学学报 (工学版), 2022, 52(1): 1-8.
[3] 张月芳,邓红霞,呼春香,钱冠宇,李海芳. 融合残差块注意力机制和生成对抗网络的海马体分割[J]. 山东大学学报 (工学版), 2020, 50(6): 76-81.
[4] 黄劲潮. 深度残差特征与熵能量优化运动目标跟踪算法[J]. 山东大学学报 (工学版), 2019, 49(4): 14-23.
[5] 颜子夜,陆耀,李建武,马跃. 一种基于核主成分分析的图像超分辨率算法[J]. 山东大学学报(工学版), 2011, 41(4): 101-105.
[6] 浦剑1 ,张军平1 ,黄华2 . 超分辨率算法研究综述[J]. 山东大学学报(工学版), 2009, 39(1): 27-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[2] 赵然杭,陈守煜 . 水资源数量与质量联合评价理论模型研究[J]. 山东大学学报(工学版), 2006, 36(3): 46 -50 .
[3] 田芳1,张颖欣2,张礼3,侯秀萍3,裘南畹3. 新型金属氧化物薄膜气敏元件基材料的开发[J]. 山东大学学报(工学版), 2009, 39(2): 104 -107 .
[4] 赵延风1,2, 王正中1,2 ,芦琴1,祝晗英3 . 梯形明渠水跃共轭水深的直接计算方法[J]. 山东大学学报(工学版), 2009, 39(2): 131 -136 .
[5] 宋青,李晓磊,张承进 . 基于瓶颈分析的邮政速递网络的优化[J]. 山东大学学报(工学版), 2007, 37(5): 29 -33 .
[6] 胡红春,吴耀华,廖莉 . 物流配送车辆线路的优化及其应用[J]. 山东大学学报(工学版), 2007, 37(4): 104 -107 .
[7] 穴洪涛,田国会,李晓磊,路飞 . QR Code在多种类物体识别与操作中的应用[J]. 山东大学学报(工学版), 2007, 37(6): 25 -30 .
[8] 马其华 王宜泰. 高密度电阻率法在煤矿界外巨空水探测上的应用[J]. 山东大学学报(工学版), 2009, 39(4): 107 -111 .
[9] 高明 史月涛 王妮妮 孙奉仲 平亚明. 侧风环境下自然通风湿式冷却塔周向进风变化规律[J]. 山东大学学报(工学版), 2009, 39(3): 154 -158 .
[10] 刘文亮,朱维红,陈涤,张泓泉. 基于雷达图像的运动目标形态检测及跟踪技术[J]. 山东大学学报(工学版), 2010, 40(3): 31 -36 .