您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (1): 115-122.doi: 10.6040/j.issn.1672-3961.0.2019.063

• 其他 • 上一篇    下一篇

基于数字测量技术的桥梁监测及预警系统

于承新1(),张国建2,*(),赵永谦3,刘晓东4,丁新华5,赵同龙6   

  1. 1. 山东建筑大学商学院, 山东 济南 250101
    2. 中国矿业大学环境与测绘学院, 江苏 徐州 221116
    3. 山东建筑大学理学院, 山东 济南 250101
    4. 山东建筑大学继续教育学院, 山东 济南 250101
    5. 山东省地图院, 山东 济南 250001
    6. 山东建筑大学测绘地理信息学院, 山东 济南 250101
  • 收稿日期:2019-02-15 出版日期:2020-02-20 发布日期:2020-02-14
  • 通讯作者: 张国建 E-mail:ycx1108@126.com;G_J_Zhang@cumt.edu.cn
  • 作者简介:于承新(1961—),男,山东烟台人,教授,主要研究方向为近景摄影测量. E-mail:ycx1108@126.com
  • 基金资助:
    江苏省研究生科研与实践创新计划项目(KYCX19_2162);中国矿业大学研究生科研与实践创新计划项目(KYCX19_2162);山东省科技攻关计划项目(2010GZX20125);2016山东建筑大学博士科研基金资助项目(XNBS1635);山东省住房和城乡建设厅科技计划项目(2017-K2-001)

Bridge monitoring and warning system based on digital measurement technology

Chengxin YU1(),Guojian ZHANG2,*(),Yongqian ZHAO3,Xiaodong LIU4,Xinhua DING5,Tonglong ZHAO6   

  1. 1. Business school, Shandong Jianzhu University, Jinan 250101, Shandong, China
    2. School of Environmental Science and Spatial Informatics, China University of Mining & Technology, 221116 Xuzhou, China
    3. School of Science, Shandong Jianzhu University, Jinan 250101, Shandong, China
    4. College of Continuing Education, Shandong Jianzhu University, Jinan 250101, Shandong, China
    5. Map Institute of Shandong Province, Jinan 250001, Shandong, China
    6. Colledge of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan 250101, Shandong, China
  • Received:2019-02-15 Online:2020-02-20 Published:2020-02-14
  • Contact: Guojian ZHANG E-mail:ycx1108@126.com;G_J_Zhang@cumt.edu.cn
  • Supported by:
    江苏省研究生科研与实践创新计划项目(KYCX19_2162);中国矿业大学研究生科研与实践创新计划项目(KYCX19_2162);山东省科技攻关计划项目(2010GZX20125);2016山东建筑大学博士科研基金资助项目(XNBS1635);山东省住房和城乡建设厅科技计划项目(2017-K2-001)

摘要:

为了弥补传统测量手段在监测桥梁整体变形和长期实时监测的不足,克服基于单目视觉的数字摄影技术无法监测桥梁三维变形的缺陷,提出图像匹配-时间基线视差法。在适当位置布设观测站,架设数码相机,在距离数码相机不远处布设参考点组成参考平面,使得参考平面与摄影方向垂直,在桥梁上布设观测点。根据图像匹配-时间基线视差法求得变形点在物平面上的二维变形值,再利用三维变形监测原理将物平面上的水平变形分解到沿桥梁方向和垂直于桥梁方向,从而求得桥梁的三维变形。结果表明:桥梁变形点的监测精度在物平面上的X方向上为0.72 mm,在Z方向上为1.16 mm,能够满足变形监测的精度要求。凤凰山路桥在X, Y, Z以及综合方向上都表现出较好的弹性,且最大的正负挠度的绝对值之和为7.57 mm≈(1/8)×(L/1000)(桥梁挠度的容许变形),桥梁的健康状态良好。桥梁监测及预警系统能够实现数据获取、传输、存储、处理,以及结果展示一体化,且变形曲线图能够直观展示桥梁结构的变形走向,有效的预警潜在的危险。

关键词: 数字测量技术, 图像匹配-时间基线视差法, 桥梁, 三维变形, 动态监测, 安全预警

Abstract:

In order to make up the deficiency of the traditional measuring method in monitoring the whole deformation and real-time monitoring of the bridge and overcome the defect of digital photography in monitoring the three-dimensional deformation of a bridge, this paper presented the image matching-time baseline parallax method: a digital camera was set up in the proper place, and a reference plane, consisting of reference points, was not far from the digital camera. Reference plane was perpendicular to the photographic direction, and the monitoring points were on the bridge. The two-dimensional deformation on the object plane of the deformation point was obtained based on image matching-time baseline parallax method, then the horizontal deformation on object plane was disassembled into the bridge direction and the direction perpendicular to bridge direction based on the principle of three-dimensional deformation monitoring, The three-dimensional deformation of the bridge was got. Results showed that measurement accuracy of the bridge was 0.72 mm and 1.16 mm in X and Z direction on object plane, respectively. It could meet accuracy requirements of deformation monitoring. As Phoenix mountain road-bridge showed good flexibility in X, Y, Z and comprehensive direction, and the absolute of the maximum positive and negative deflection was 7.57 mm, which was approximately equal to 1/8 of the allowable deflection of the bridge (L/1 000), and the bridge was in good health. Bridge health monitoring and warning system could achieve the integration of data acquisition, storage, processing and display. The deformation curves could show the deformation trend of the bridge and effectively warn the potential danger.

Key words: digital measuring technique, image matching-time baseline parallax method, bridge, three-dimensional deformation, dynamic monitoring, safety warning

中图分类号: 

  • P234.1

表1

数码相机监测精度检定"

线段 解算长度 精测长度 差值
U0U2 588 589 1
U1U3 596 595 1
U2U4 599 599 0

图1

图像匹配-时间基线视差法"

图2

桥梁健康监测及预警软件界面"

图3

凤凰山路桥试验现场"

图4

三维变形监测原理"

表2

点位空间坐标"

点名 X Y Z
SONY500 999.456 994.122 99.950
U1 942.712 955.451 101.884
U2 948.751 954.529 101.955
U3 954.701 953.632 102.005
U4 958.567 952.600 102.786
U5 974.324 950.199 102.684

表3

数码相机在试验中的监测精度"

参考点 X方向监测精度 Z方向监测精度 实际监测精度
C6 0.42 0.63 0.78
C7 0.80 0.59 0.99
C8 0.68 1.05 1.25
C9 0.75 1.26 1.47

表4

变形点的三维变形值"

序号 U3 U4 U5
X Y Z X Y Z X Y Z
1 -1.59 -1.27 2.58 -1.05 -0.84 2.81 -1.55 -1.24 2.50
2 -1.50 -1.20 -0.39 -1.09 -0.87 0.53 -2.57 -2.05 -0.42
3 -1.30 -1.04 0.37 -0.86 -0.69 0.37 -1.85 -1.48 -0.58
4 -1.59 -1.27 1.23 -1.05 -0.84 1.17 -1.55 -1.24 -0.40
5 -1.59 -1.27 1.05 -1.05 -0.84 1.93 -0.83 -0.66 -0.56
6 -1.59 -1.27 0.56 -1.05 -0.84 0.69 -1.55 -1.24 1.27
7 0.00 0.00 0.00 0.73 0.58 0.00 0.73 0.58 -0.93
8 0.53 0.42 0.98 1.11 0.89 1.25 0.16 0.12 1.55
9 -2.05 -1.64 0.67 -1.72 -1.37 0.63 -3.20 -2.56 0.01
10 -1.59 -1.27 -1.67 -1.05 -0.84 -1.90 -1.55 -1.24 -2.57
11 -0.76 -0.61 0.54 -0.24 -0.19 0.53 -1.21 -0.97 0.51
12 -1.60 -1.28 -2.06 -1.05 -0.84 -2.30 -0.83 -0.66 -3.00
13 -2.02 -1.62 -1.67 -1.59 -1.27 -1.90 -2.58 -2.06 -2.57
14 -1.50 -1.20 -0.42 -1.09 -0.87 -0.56 -1.84 -1.47 -1.22

图5

U1-U5动态变形曲线图"

1 严国敏. 韩国圣水大桥的倒塌[J]. 世界桥梁, 1996, (4): 47- 50.
YAN Guomin . Collapse of Seongsu bridge in South Korea[J]. World Bridges, 1996, (4): 47- 50.
2 刘俊彦. 綦江"彩虹桥"坍塌事件给我们的警示[J]. 陕西档案, 1999, (4): 28- 29.
doi: 10.3969/j.issn.1003-7268.1999.04.016
LIU Junyan . Warning of Qijiang "rainbow bridge" collapse event to us[J]. Shaanxi Archives, 1999, (4): 28- 29.
doi: 10.3969/j.issn.1003-7268.1999.04.016
3 孙硕.数字地面摄影技术在桥梁变形监测中的应用[D].青岛:山东科技大学, 2012.
SUN Shuo. Application of digital close-range photogrammetry in bridge deformation detection[D]. Qingdao: Shandong University of Science and Technology, 2012.
4 程征.基于数字摄影测量原理的桥梁健康监测方法研究[D].广州:广州大学, 2013.
CHENG Zheng. Research on health monitoring based on digital photogrammetry theory for bridge structure[D]. Guangzhou: Guangzhou University, 2013.
5 张俊平. 桥梁检测[M]. 北京: 人民交通出版社, 2002.
6 朱彦, 承宇, 张宇峰, 等. 基于GPS技术的大跨桥梁实时动态监测系统[J]. 现代交通技术, 2010, 7 (3): 48- 51.
doi: 10.3969/j.issn.1672-9889.2010.03.015
ZHU Yan , CHENG Yu , ZHANG Yufeng , et al. GPS-based real-time dynamic monitoring system for long span bridge[J]. Modern Transportation Technology, 2010, 7 (3): 48- 51.
doi: 10.3969/j.issn.1672-9889.2010.03.015
7 张正禄. 测量机器人[J]. 测绘通报, 2001, (5): 17.
doi: 10.3969/j.issn.0494-0911.2001.05.019
ZHANG Zhenglu . Measurement Robot[J]. Bulletin of Surveying and Mapping, 2001, (5): 17.
doi: 10.3969/j.issn.0494-0911.2001.05.019
8 欧洪武. 利用加速度计测量振动位移曲线[J]. 动态分析与测试技术, 1990, (4): 33- 36.
OU Hongwu . Measuring vibration displacement curve by one accelerometer[J]. Dynamic Analysis and Testing Techniques, 1990, (4): 33- 36.
9 熊友谊, 陈宜金, 冯志新, 等. 基于地面激光扫描的三山南桥载荷变形监测研究[J]. 测绘与空间地理信息, 2012, 35 (8): 26- 29.
doi: 10.3969/j.issn.1672-5867.2012.08.008
XIONG Youyi , CHEN Yijin , FENG Zhixin , et al. The research on load-generated deformation monitoring of Sanshan South Bridge based on terrestrial laser scanning[J]. Geomatics & Spatial Information Technology, 2012, 35 (8): 26- 29.
doi: 10.3969/j.issn.1672-5867.2012.08.008
10 刘念东, 朱永, 陈伟民. 激光挠度、位移测量系统的研究与开发[J]. 激光杂志, 2001, 22 (6): 49- 50.
doi: 10.3969/j.issn.0253-2743.2001.06.018
LIU Niandong , ZHU Yong , CHEN Weimin . Research on laser deflecto-meter and dis-placement meas-urement system[J]. Laser Journal, 2001, 22 (6): 49- 50.
doi: 10.3969/j.issn.0253-2743.2001.06.018
11 李东光, 张国雄. 高速精密激光干涉测量的研究现状及其关键技术[J]. 航空精密制造技术, 1998, (6): 30- 35.
12 张国建, 于先智, 于承新. 数字摄影技术监测桥梁震动变形的研究[J]. 山东科学, 2015, 28 (5): 85- 90.
ZHANG Guojian , YU Xianzhi , YU Chengxin . Research of bridge vibration deformatio-n monitoring with digital close-range photogrammetry[J]. Shandong Science, 2015, 28 (5): 85- 90.
13 JIANG R , JAUREGUI D V , WHITE K R . Close-range photogrammetry applications in bridge measurement: literature review[J]. Measurement, 2008, 41 (8): 823- 834.
doi: 10.1016/j.measurement.2007.12.005
14 ABDELSAYED G , BAKHT B , JAEGER L G . Soil-steel bridges: design and construction[M]. New York, USA: MCGRAW-HILL, 1994.
15 FORNO C , BROWN S , HUNT R A , et al. Measurement of deformation of a bridge by Moire photography and photogrammetry[J]. Strain, 2008, 27 (3): 83- 87.
16 JIANG R , JAUREGUI D V . Development of a digital close-range photogrammetric bridge deflection meas-urement system[J]. Measurement, 2010, 43 (10): 1431- 1438.
doi: 10.1016/j.measurement.2010.08.015
17 夏哲.大跨度桥梁变形自标定图像测量技术研究[D].重庆:重庆大学, 2004.
XIA Zhe. Study on deformation measurement of long span bridge with self-calibra-tion image technology[D]. Chongqing: Chongqing University, 2004.
18 梁菲.近景摄影测量在桥梁变形监测中的应用[D].重庆:重庆交通大学, 2010.
LIANG Fei. The application of digital close-range photography in bridge deformation measurement[D].Chongqing: Chongqing Jiaotong University, 2010.
19 张国建, 于承新. 数字近景摄影测量在桥梁变形观测中的应用[J]. 全球定位系统, 2016, 41 (1): 91- 95.
ZHANG Guojian , YU Chengxin . The application of digital close-range photogrammetry in the deformation observation of bridge[J]. GNSS World of China, 2016, 41 (1): 91- 95.
20 范绪奇, 徐冲. 远程微动测量仪在结构健康监测中的应用[J]. 测绘地理信息, 2012, 37 (4): 34- 36.
FAN Xuqi , XU Chong . Structural health monitoring based on remote sensed micromovement meter[J]. Journal of Geomatics, 2012, 37 (4): 34- 36.
21 陈思, 仲思东. 基于CCD的桥梁变形三维实时监测系统[J]. 计算机测量与控制, 2006, 14 (5): 583- 585.
CHEN Si , ZHONG Sidong . 3D real-time bridge deformation detection system basedon CCD[J]. Computer Measurement & Control, 2006, 14 (5): 583- 585.
22 ZHANG Guojian , GUO Guangli , LI Long , et al. Study on the dynamic properties of a suspended bridgeusing monocul-ar digital photography to monitor the bridge dynamic deformation[J]. Journal of Civil Structural Health Monitoring, 2018, 8 (2): 1- 13.
23 ZHANG Guojian , GUO Guangli , YU Chengxin , et al. Monitoring dynamic global deflection of a bridge by monocular digital photography[J]. Civil Engineering Journal, 2018, 27 (2): 168- 182.
24 ZHANG Guojian , GUO Guangli , YU Chengxin , et al. Monitoring instantaneous dynamic displacements of masonry walls in seismic oscillation outdoors by monocular digital photography[J]. Mathematical Problems in Engineering, 2018, 2018 (4): 1- 15.
25 交通部公路规划设计院.公路砖石及混凝土桥涵设计规范: JTJ 022—85[S].北京:人民交通出版社, 1999.
[1] 彭元诚,董旭,梁娜,邓振全. 北盘江新型空腹式连续刚构桥角隅节点模型试验研究[J]. 山东大学学报(工学版), 2016, 46(6): 113-119.
[2] 王恩东 . 箱梁桥桥面铺装受力特性研究[J]. 山东大学学报(工学版), 2008, 38(2): 71-76 .
[3] 孙秀玲,马惠群,项传慧,刘建生 . 拟建跨河桥梁对河道堤防的影响分析[J]. 山东大学学报(工学版), 2006, 36(4): 44-47 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 浦剑1 ,张军平1 ,黄华2 . 超分辨率算法研究综述[J]. 山东大学学报(工学版), 2009, 39(1): 27 -32 .
[2] 秦通,孙丰荣*,王丽梅,王庆浩,李新彩. 基于极大圆盘引导的形状插值实现三维表面重建[J]. 山东大学学报(工学版), 2010, 40(3): 1 -5 .
[3] 刘文亮,朱维红,陈涤,张泓泉. 基于雷达图像的运动目标形态检测及跟踪技术[J]. 山东大学学报(工学版), 2010, 40(3): 31 -36 .
[4] 王丽君,黄奇成,王兆旭 . 敏感性问题中的均方误差与模型比较[J]. 山东大学学报(工学版), 2006, 36(6): 51 -56 .
[5] 孙殿柱,朱昌志,李延瑞 . 散乱点云边界特征快速提取算法[J]. 山东大学学报(工学版), 2009, 39(1): 84 -86 .
[6] 岳远征. 远离平衡态玻璃的弛豫[J]. 山东大学学报(工学版), 2009, 39(5): 1 -20 .
[7] 程代展,李志强. 非线性系统线性化综述(英文)[J]. 山东大学学报(工学版), 2009, 39(2): 26 -36 .
[8] 胡天亮,李鹏,张承瑞,左毅 . 基于VHDL的正交编码脉冲电路解码计数器设计[J]. 山东大学学报(工学版), 2008, 38(3): 10 -13 .
[9] 陈华鑫, 陈拴发, 王秉纲. 基质沥青老化行为与老化机理[J]. 山东大学学报(工学版), 2009, 39(2): 125 -130 .
[10] 张恭孝,杨荣华 . 水杨醛缩甲基氨基硫脲Schiff碱配合物的合成与表征[J]. 山东大学学报(工学版), 2008, 38(3): 108 -111 .