您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (6): 36-44.doi: 10.6040/j.issn.1672-3961.0.2019.236

• 控制科学与工程——机器人专题 • 上一篇    下一篇

基于模型不确定补偿的轮式移动机器人反演复合控制

刘美珍1(),周风余1,*(),李铭2,王玉刚1,陈科1   

  1. 1. 山东大学控制科学与工程学院, 山东 济南 250061
    2. 山东大学工程训练中心, 山东 济南 250061
  • 收稿日期:2019-05-17 出版日期:2019-12-20 发布日期:2019-12-17
  • 通讯作者: 周风余 E-mail:mzliu94k@163.com;zhoufengyu@sdu.edu.cn
  • 作者简介:刘美珍(1994—),女,陕西咸阳人,博士研究生,主要研究方向为机器人、服务机器人. E-mail:mzliu94k@163.com
  • 基金资助:
    国家重点研发计划项目(2017YFB1302400);国家自然科学基金(61773242);山东省重大科技创新工程项目(2017CXGC0926);山东省重点研发计划(公益类专项)项目(2017GGX30133)

The composite control of backstepping control based on uncertain model compensation of wheeled mobile robot

Meizhen LIU1(),Fengyu ZHOU1,*(),Ming LI2,Yugang WANG1,Ke CHEN1   

  1. 1. School of Control Science and Engineering, Shandong University, Jinan 250061, Shandong, China
    2. Engineering Training Center, Shandong University, Jinan 250061, Shandong, China
  • Received:2019-05-17 Online:2019-12-20 Published:2019-12-17
  • Contact: Fengyu ZHOU E-mail:mzliu94k@163.com;zhoufengyu@sdu.edu.cn
  • Supported by:
    国家重点研发计划项目(2017YFB1302400);国家自然科学基金(61773242);山东省重大科技创新工程项目(2017CXGC0926);山东省重点研发计划(公益类专项)项目(2017GGX30133)

摘要:

针对轮式移动机器人存在模型不确定性、非线性以及未建模的动态特性等因素,严重影响系统轨迹跟踪的稳定性和精确性,提出一种基于系统模型不确定性补偿的反演复合控制策略。基于非完整轮式移动机器人的运动学模型,采用反演控制思想以及李雅普诺夫稳定性判据设计轨迹跟踪的虚拟速度控制量,作为系统的持续激励输入。考虑轮式移动机器人具有模型不确定性和外部有界力矩干扰,根据轮式移动机器人的动力学模型推导得到系统不确定项,并采用具有高度非线性拟合特性的神经网络对其估计,得到模型的力矩控制量,且由李雅普诺夫稳定性分析得到不确定项的自适应律,实现自调整和实时轨迹跟踪。对比仿真表明,该复合控制策略能自适应的跟踪期望轨迹,与单一的反演控制、模型不确定性补偿控制策略、传统PID控制相比,均具有更好的鲁棒性和高的跟踪精度。

关键词: 轮式移动机器人, 非完整轮式, 反演控制, 李雅普诺夫稳定性, 自适应率

Abstract:

Given these factors of model uncertainty, non-linearity and unmodeled dynamic characteristics existing in wheeled mobile robots, which seriously affected the stability and accuracy of trajectory tracking, a backstepping composite control strategy based on model uncertainty compensation was proposed. Based on the kinematics model of a nonholonomic wheeled mobile robot, backstepping control and Lyapunov stability criterion were adopted to design virtual velocity control quantity as continuous incentive input for trajectory tracking. Considering the model uncertainty and external bounded moment disturbance of wheeled mobile robots, the uncertainties of the system were derived from the dynamic model of wheeled mobile robots, and the moment control quantity of model was acquired by using the neural network with highly nonlinear fitting characteristics, and then adaptive law of uncertainties was obtained from Lyapunov stability analysis to realize self-adjustment and real-time trajectory tracking. The simulation results showed that the proposed composite control strategy could track the reference trajectory adaptively, and had better robustness and tracking accuracy than the single backstepping control strategy, model uncertainty compensation control strategy and PID controller.

Key words: wheeled mobile robot, nonholonomic wheeled, backstepping control, Lyapunov stability, adaptive law

中图分类号: 

  • TP24

图1

轮式移动机器人模型"

图2

轮式移动机器人闭环控制系统"

图3

基于不确定模型补偿的反演复合控制框图"

表1

控制参数对比表"

控制系统 基于运动学模型控制参数 基于动力学模型控制参数 PID控制参数
c1 c2 c3 k1 k2 k3 m l KP KT KD
反演控制系统 2 2 10
不确定模型估计控制系统 20 10 4 1 0.4
复合控制系统 3 10 50 5 10 2 1 0.4
PID控制系统 60 10 50

图4

圆形轨迹跟踪对比图"

图5

圆形轨迹x轴跟踪误差对比图"

图6

圆形轨迹y轴跟踪误差对比图"

图7

四叶草型轨迹跟踪对比图"

图8

四叶草型轨迹x轴跟踪误差对比图"

图9

四叶草型轨迹y轴跟踪误差对比图"

1 DUNBALIM M , MARQUES L . Robots for environmental monitoring: significant advancements and applications[J]. Robotics & Automation Magazin, 2012, 19 (1): 24- 39.
2 BAMES M , JENTSCH F . Human-robot interactions in future military operations[M]. Burlington, USA: Ashgate Publishing Company, 2010.
3 BUALAT M, FONG T, ALLAN M, et al. Surface telerobotic: development and testing of a crew controlled planetary rover system[C]//AIAA Space Conference. San Diego, USA: American Institute of Aeronautics and Astronautics Inc, 2013.
4 丁亮.月/星球车轮地作用地面力学模型及其应用研究[D].哈尔滨:哈尔滨工业大学, 2010.
DING Liang. Study on ground mechanics model of wheel-ground interaction of moon/planet and its application[D]. Harbin: Harbin University of Technology, 2010.
5 SCHMIDT K W , BOUTAILS Y S . Fuzzy discrete event systems for multiobjective control: framework and application to mobile robot navigation[J]. Fuzzy Systems: IEEE Transactions on, 2012, 20 (5): 910- 922.
6 宋兴国.轮式机器人的移动系统建模及基于模型学习的跟踪控制研究[D].哈尔滨:哈尔滨工业大学, 2015.
SUN Xingguo. Modeling of wheeled robot's mobile system and tracking control based on model learning[D]. Harbin: Harbin University of Technology, 2015.
7 XIN Xie , WANG Qinglin , SHE Jinhua , et al. Robust adaptive tracking control of wheeled mobile robot[J]. Robotics and Autonomous Systems, 2016, 78, 36- 48.
8 ROSSOMANDO F G , SORIA C , CARELLI R . Sliding mode control for trajectory tracking of a nonholonomic mobile robot using adaptive neural networks[J]. Control Engineering & Applied Informatics, 2014, 16 (1): 12- 21.
9 AISSA Bencherif, FATIMA Chouireb. Adaptive neural fuzzy control for trajectory tracking of a wheeled mobile robot[C]//2015 4th International Conference on Electrical Engineering. Boumerdes, Algeria: Institute of Electrical and Electronics Engineers Inc, 2015.
10 SHOJAEI Khoshnam , MOHAMMAD Alireza , TARAKAMEH Ahmadreza , et al. Adaptive trajectory tracking control of a differential drive wheeled mobile robot[J]. Robotica, 2011, 29 (3): 391- 402.
11 LU Xiaochun , FEI Juntao . Velocity tracking control of wheeled mobile robots by iterative learning control[J]. International Journal of Advanced Robotic Systems, 2016, 13 (3): 1- 10.
12 陈罡, 高婷婷, 贾庆伟, 等. 带有未知参数和有界干扰的移动机器人轨迹跟踪控制[J]. 控制理论与应用, 2015, 32 (4): 491- 496.
CHEN Gang , GAO Tingting , JIA Qingwei , et al. Trajectory tracking control of mobile robots with unknown parameters and bounded disturbances[J]. Control Theory and Application, 2015, 32 (4): 491- 496.
13 朱玲, 李艳东, 孙明. 移动机器人编队的神经网络滑模控制[J]. 电机与控制学报, 2014, 18 (3): 113- 118.
ZHU Ling , LI Yandong , SUN Ming . Neural network sliding mode control for mobile robot formation[J]. Journal of Motor and Control, 2014, 18 (3): 113- 118.
14 王宗义, 李艳东, 刘涛, 等. 移动机器人的自适应模糊滑模动力学控制[J]. 哈尔滨工程大学学报, 2011, 32 (6): 792- 799.
WANG Zongyi , LI Yandong , LIU Tao , et al. Adaptive fuzzy sliding mode dynamics control for mobile robots[J]. Journal of Harbin University of Engineering, 2011, 32 (6): 792- 799.
15 HWANG E , KANG H , HYUN C , et al. Robust backstepping control based on a Lyapunov redesign for skid-steered wheeled mobile robots[J]. International Journal of Advanced Robotic Systems, 2013, 10 (26): 1- 8.
16 HOU Z G , ZOU A M , CHENG L , et al. Adaptive control of an electrically driven nonholonomic mobile robot via backstepping and fuzzy approach[J]. Control Systems Technology: IEEE Transactions on, 2009, 17 (4): 803- 815.
17 CHWA D . Fuzzy adaptive tracking control of wheeled mobile robots with state-dependent kinematic and dynamic disturbances[J]. Fuzzy Systems: IEEE Transactions on, 2012, 20 (3): 587- 593.
18 DONG W , KUHNERT K D . Robust adaptive control of nonholonomic mobile robot with parameter and nonparameter uncertainties[J]. Robotics: IEEE Transactions on, 2005, 21 (2): 261- 266.
19 沈智鹏, 张晓玲. 带扰动补偿的移动机器人轨迹跟踪反演控制[J]. 控制工程, 2019, 26 (3): 398- 404.
SHEN Zhipeng , ZHANG Xiaoling . Backstepping control for trajectory tracking of mobile robots with disturbance compensation[J]. Control Engineering, 2019, 26 (3): 398- 404.
20 吴卫国, 陈辉堂, 王月娟. 移动机器人的全局轨迹跟踪控制[J]. 自动化学报, 2001, 27 (3): 326- 331.
WU Weiguo , CHEN Huitang , WANG Yuejuan . Global trajectory tracking control of mobile robots[J]. Journal of Automation, 2001, 27 (3): 326- 331.
21 ZHOU Yang, ZHOU Fengyu, WANG Da, et al. Path-tracking of mobile robot using feedback-aided P-type iterative learning control against initial state error[C]//2017 IEEE 6th Data Driven Control and Learning Systems Conference. Chongqing, China: IEEE, 2017: 587-592.
22 JIANG Z P , NIJMEUJER H . Tracking control of mobile robots: a case study in backstepping[J]. Automatica, 1997, 33 (7): 1393- 1399.
23 郑大钟. 线性系统理论[M]. 北京: 清华大学出版社, 2002.
24 FENG G . A compensation scheme for robot tracking based on neural networks[J]. Robotics and Autonomous Systems, 1995, 15, 100- 206.
25 MARY A D , MATHEW A T , JACOB J . Robust H-infinity: stabilization of uncertain wheeled mobile robots[J]. Global Journal of Researches in Engineering Electrical and Electronics Engineering, 2012, 12 (1): 22- 31.
26 WANG Xiaojing , LIU Meizhen , CHEN Shuai , et al. PID-PFC control of continuous rotary electro-hydraulic servo motor applied to simulator[J]. The Journal of Engineering, 2019, 13, 138- 143.
[1] 张玉婷,李望,王晨光,刘友权,侍红军. 不连续耦合的时滞复杂动态网络的同步[J]. 山东大学学报(工学版), 2017, 47(4): 43-49.
[2] 李艳芳,刘允刚 . 一类参数不确定系统的输出反馈自适应镇定[J]. 山东大学学报(工学版), 2006, 36(6): 76-81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王凯,孙奉仲,赵元宾,高明,高山 . 自然通风冷却塔进风口流场模型的建立及计算[J]. 山东大学学报(工学版), 2008, 38(1): 13 -17 .
[2] 马其华 王宜泰. 高密度电阻率法在煤矿界外巨空水探测上的应用[J]. 山东大学学报(工学版), 2009, 39(4): 107 -111 .
[3] 韩雪. 平庄西露天煤矿滑坡灾害远程监测实例分析[J]. 山东大学学报(工学版), 2009, 39(4): 116 -120 .
[4] 丑武胜 王朔. 大刚度环境下力反馈主手自适应算法研究[J]. 山东大学学报(工学版), 2010, 40(1): 1 -5 .
[5] 李利平,李术才,徐帮树,丁万涛,蔚立元 . 海底隧道施工设计及其数值优化研究[J]. 山东大学学报(工学版), 2008, 38(4): 63 -68 .
[6] 黄劲潮. 基于快速区域建议网络的图像多目标分割算法[J]. 山东大学学报(工学版), 2018, 48(4): 20 -26 .
[7] 林新元 张峰. 基于混合有限元理论的连续刚构底板崩裂分析[J]. 山东大学学报(工学版), 2009, 39(6): 125 -129 .
[8] 刘海春,谢少军,王国凤 . 一种新颖的应用于三相四线有源电力滤波器的混合电流控制方法[J]. 山东大学学报(工学版), 2007, 37(6): 10 -14 .
[9] 任小花 崔兆杰. 煤气化高浓度含酚废水萃取/反萃取脱酚技术研究[J]. 山东大学学报(工学版), 2010, 40(1): 93 -97 .
[10] 张龙云,曹升乐 . 物元可拓法在黄河水质评价中的改进及其应用[J]. 山东大学学报(工学版), 2007, 37(6): 91 -94 .