您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (5): 58-63.doi: 10.6040/j.issn.1672-3961.0.2019.155

• 能源与动力工程———制冷技术专题 • 上一篇    下一篇

太阳能集热器驱动的吸收式制冷系统性能分析

王彤彤1(),孙嘉楠1,张涛2,于泽庭1,*(),殷纪强1   

  1. 1. 山东大学能源与动力工程学院, 山东 济南 250061
    2. 山东电力工程咨询院有限公司, 山东 济南 250013
  • 收稿日期:2019-04-11 出版日期:2019-10-20 发布日期:2019-10-18
  • 通讯作者: 于泽庭 E-mail:201744126@mail.sdu.edu.cn;yuzt@sdu.edu.cn
  • 作者简介:王彤彤(1995—),女,山东济南人,硕士,主要研究方向为中低品位能源高效利用技术.E-mail:201744126@mail.sdu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61733010);山东省自然科学基金资助项目(ZR2019MEE045)

Performance analysis for an absorption refrigeration system driven by parabolic trough solar collector

Tongtong WANG1(),Jianan SUN1,Tao ZHANG2,Zeting YU1,*(),Jiqiang YIN1   

  1. 1. School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
    2. Shandong Electric Power Engineering Consulting Institute Co., Ltd, Jinan 250013, Shandong, China
  • Received:2019-04-11 Online:2019-10-20 Published:2019-10-18
  • Contact: Zeting YU E-mail:201744126@mail.sdu.edu.cn;yuzt@sdu.edu.cn
  • Supported by:
    国家自然科学基金资助项目(61733010);山东省自然科学基金资助项目(ZR2019MEE045)

摘要:

为了合理利用太阳能,增强制冷系统的季节适应性,提出一种中温太阳能驱动的氨水吸收式制冷系统。以抛物面槽式太阳能集热器(parabolic trough solar collector, PTSC)驱动的氨水单效吸收式制冷系统为对象,根据热力学定律和能量平衡方程,在工程求解器(engineering equation solver, EES)下,分别建立太阳能集热器模型和制冷系统模型,并对系统的关键参数进行计算。从制冷量、精馏热和系统能效比(COP)三方面分析了系统高压、系统低压、蒸发器出口温度和精馏器出口质量分数对系统的影响。结果表明:制冷量随系统低压的升高而降低;精馏热及COP随系统低压的升高而增加;蒸发器的出口温度升高时,制冷量和COP均有增加;当精馏器出口氨的质量分数为0.977~0.999, COP在氨水质量分数为0.992时出现最大值。研究结果为太阳能驱动单级吸收式制冷循环的可行性提供了理论依据。

关键词: 太阳能, 抛物面槽式太阳能集热器, 制冷系统, 氨水工质, 系统能效比

Abstract:

In order to make rational use of solar energy, enhance the seasonal adaptability of the refrigeration system, a medium temperature solar driven ammonia water absorption refrigeration system was proposed. Based on the parabolic trough solar collector (PTSC) driven ammonia single-effect absorption refrigeration system, according to the laws of thermodynamics and the energy balance equation, under the engineering equation solver (ESS), the solar collector model and the refrigeration system model were established respectively, and the key parameters of the system were calculated. The effects of system high pressure, system low pressure, evaporator outlet temperature and rectifier outlet mass fraction on the system were analyzed from three aspects: refrigeration capacity, rectification heat and coefficient of performance (COP). The results showed that the cooling capacity decreased with the increase of the system low pressure; the rectification heat and COP increased with the increasing of the system low pressure; when the outlet temperature of the evaporator rised, the cooling capacity and COP increased; when the rectifier mass fraction increased from 0.977 to 0.999, the COP showed a maximum when the ammonia mass fraction was 0.992. The results provided a theoretical basis for the feasibility of the single-stage absorption refrigeration cycle driven by solar energy.

Key words: solar energy, parabolic trough solar collector, ammonia-water, refrigeration system, COP

中图分类号: 

  • TM911

图1

PTSC驱动的氨水吸收式制冷系统示意图 Abs—吸收器; P—泵; V1—节流阀1;V2—节流阀2; G—发生器; REC—精馏器1; Eva—蒸发器; PTSC—抛物面槽式太阳能集热器; Con—冷凝器"

表1

系统输入参数"

环境温度/℃ 环境压力/MPa IAM PTSC开口宽度/m PTSC长度/m 工质流速/(kg·h-1) 单个集热器模块面积/m2 集热器模块数量/个 吸收器出口温度/℃ 泵等熵效率/%
20 0.1 0.93 2.3 22.54 1 200 30 4 40.1 80

表2

太阳能集热器计算结果"

集热管出口温度/K 槽式聚光镜吸收的太阳能/(W·m-1) 集热管能量损失/(W·m-1) 集热器模块间压降/kPa 太阳能集热器效率/% 支架能量损失/kW 玻璃管能量损失/kW
369.84 1 040 117.9 0.567 42.43 43.029 20.81

表3

制冷循环中各点的计算结果"

状态点 压力/MPa 温度/K ω(氨)/% 焓/(kJ·kg-1) 熵/(kJ·K-1)
1 0.288 313.1 0.397 50.0 0.461
2 1.555 313.2 0.397 48.8 0.460
3 1.555 397.2 0.297 358.0 1.562
4 0.280 350.0 0.297 358.0 1.617
5 1.555 374.9 0.958 1516.0 4.811
6 1.555 374.9 0.397 229.4 1.270
7 1.555 317.6 0.999 129 8 4.184
8 1.555 313.1 0.999 190.4 0.658
9 0.288 262.9 0.999 190.4 0.735
10 0.288 278.1 0.999 1293.0 4.907

图2

系统低压对制冷系统的影响"

图3

系统高压对制冷系统的影响"

图4

蒸发器出口温度对制冷系统的影响"

图5

精馏器出口氨质量分数对制冷系统的影响"

1 高志超.抛物槽式太阳能集热技术系统集成研究[D].北京:中国科学院大学, 2011.
GAO Zhichao. Research on system integration of parabolic trench solar collecting technology[D]. Beijing: University of Chinese Academy of Sciences, 2011.
2 包天舒.氨水吸收式制冷系统的实验研究和热经济分析[D].北京:北京化工大学, 2005.
BAO Tianshu. Experimental study and thermal economic analysis of ammonia water absorption refrigeration system[D]. Beijing: Beijing University of Chemical Technology, 2005.
3 陈小砖, 柳建华, 张良, 等. 氨水吸收式制冷系统及关键设备的研究综述[J]. 低温与超导, 2013, 41 (6): 47- 51.
doi: 10.3969/j.issn.1001-7100.2013.06.011
CHEN Xiaozhuan , LIU Jianhua , ZHANG Liang , et al. Summary of research on ammonia water absorption refrigeration system and key equipment[J]. Low Temperature and Superconductivity, 2013, 41 (6): 47- 51.
doi: 10.3969/j.issn.1001-7100.2013.06.011
4 鲍鹤玲, 杨思文. 氨水吸收压缩制冷系统的研究[J]. 流体工程, 1987, (6): 57- 65.
BAO Heling , YANG Siwen . Study on ammonia water absorption compression refrigeration system[J]. Fluid Machinery, 1987, (6): 57- 65.
5 王政航.槽式太阳能聚光集热器集热性能研究[D].武汉:华中科技大学, 2015.
WANG Zhenghang. Research on the performance of parabolic trough solar collector[D]. Wuhan: Huazhong University of Science and Technology, 2015.
6 仇秋玲.一种槽式太阳能聚光集热器的热性能实验研究[D].南京:东南大学, 2016.
QIU Qiuling. Experimental research on thermal performance of a through solar collector[D]. Nanjing: Southeast University, 2016.
7 李程, 王如竹, 王丽伟, 等. 不同驱动温度下间歇性太阳能吸附制冰机的实验研究[J]. 化工学报, 2010, 61 (增刊2): 112- 115.
LI Cheng , WANG Ruzhu , WANG Liwei , et al. Experimental investigation on intermittent solar powered adsorption ice maker driven by different temperatures[J]. Ciesc Journal, 2010, 61 (Suppl.2): 112- 115.
8 王修彦, 韩露. 槽式太阳能聚光集热器传热数学模型研究[J]. 节能技术, 2017, 35 (2): 103- 107.
doi: 10.3969/j.issn.1002-6339.2017.02.002
WANG Xiuyan , HAN Lu . Research on heat transfer mathematic model of parabolic trough solar collector[J]. Energy Conservation Technology, 2017, 35 (2): 103- 107.
doi: 10.3969/j.issn.1002-6339.2017.02.002
9 赵婷, 韩巍, 孙流莉, 等. 中温太阳能驱动的分布式功冷联产系统[J]. 工程热物理学报, 2017, 35 (10): 1793- 1798.
ZHAO Ting , HAN Wei , SUN Liuli , et al. Medium temperature solar driven distributed power cooling cogeneration system[J]. Journal of Engineering Thermophysics, 2017, 35 (10): 1793- 1798.
10 WANG R Z , OLIVEIRA R G . Adsorption refrigeration: an efficient way to make good use of waste heat and solar energy[J]. Progress in Energy & Combustion Science, 2006, 32 (4): 424- 458.
11 戴雨辰, 陈飞, 李宏顺, 等. 太阳能驱动的冷热电联供系统研究进展[J]. 武汉工程大学学报, 2015, 37 (9): 68- 78.
doi: 10.3969/j.issn.1674-2869.2015.09.012
DAI Yuchen , CHEN Fei , LI Hongshun , et al. Research progress on solar-powered cogeneration system[J]. Journal of Wuhan Institute of Technology, 2015, 37 (9): 68- 78.
doi: 10.3969/j.issn.1674-2869.2015.09.012
12 陆至羚, 柳建华, 张良, 等. 氨水吸收式制冷系统性能模拟分析[J]. 制冷技术, 2016, 36 (2): 16- 20.
doi: 10.3969/j.issn.2095-4468.2016.02.004
LU Zhiling , LIU Jianhua , ZHANG Liang , et al. Simulation analysis of performance of ammonia absorption refrigeration system[J]. Refrigeration Technology, 2016, 36 (2): 16- 20.
doi: 10.3969/j.issn.2095-4468.2016.02.004
13 孟欣, 栗鹏飞. 工业余热氨水吸收式制冷系统优化研究[J]. 节能, 2016, 35 (6): 55- 583.
doi: 10.3969/j.issn.1673-6478.2016.06.018
MENG Xin , LI Pengfei . Optimization of industrial waste heat ammonia absorption refrigeration system[J]. Energy Conservation, 2016, 35 (6): 55- 583.
doi: 10.3969/j.issn.1673-6478.2016.06.018
14 刘进阳.高效氨水吸收式制冷系统的理论研究及应用[D].南宁:广西大学, 2017.
LIU Jinyang. Theoretical research and application of high efficiency ammonia water absorption refrigeration system[D]. Nanning: Guangxi University, 2017.
15 王金平.槽式太阳能光热电站关键技术及运行特性的研究[D].南京:东南大学, 2017.
WANG Jinping. Study on the key technology and operation characteristics of solar cell thermal power station[D]. Nanjing: Southeast University, 2017.
16 李梦阳, 刘朝阳, 赵明, 等. 太阳能在火电机组热力系统中的集成应用[J]. 能源研究与利用, 2017, (1): 23- 25.
doi: 10.3969/j.issn.1001-5523.2017.01.013
LI Mengyang , LIU Chaoyang , ZHAO Ming , et al. The integrated application of solar energy in thermal system of thermal power plant[J]. Energy Research & Utilization, 2017, (1): 23- 25.
doi: 10.3969/j.issn.1001-5523.2017.01.013
17 陈玉英. 槽式太阳能集热器传热模型及性能分析[J]. 土木建筑与环境工程, 2016, 38 (4): 53- 58.
CHEN Yuying . Heat transfer model and performance analysis of trough solar collector[J]. Journal of Civil, Architectural & Environmental Engineering, 2016, 38 (4): 53- 58.
18 PADILLA R V , DEMIRKYRY G , GOSWAMI D Y , et al. Analysis of power and cooling cogeneration using ammonia-water mixture[J]. Energy, 2010, 35 (12): 4649- 4657.
doi: 10.1016/j.energy.2010.09.042
19 YANG Fubin , HEEJIN CHO , ZHANG Hongguang , et al. Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery[J]. Applied Energy, 2017, 205 (4): 1100- 1118.
20 ALVARES S G , TREEP C . Simulation of a solar driven aqua-ammonia absorption refrigeration system Part 2: viability for milk cooling at remote Brazilian dairy farms[J]. International Journal of Refrigeration, 1987, 10 (2): 70- 76.
doi: 10.1016/0140-7007(87)90023-5
21 SAID S A M , SPINDLER K , EL-SHAARAWI M A , et al. Design, construction and operation of a solar powered ammonia—water absorption refrigeration system in Saudi Arabia[J]. International Journal of Refrigeration, 2016, 62, 222- 231.
doi: 10.1016/j.ijrefrig.2015.10.026
22 ABU-EIN S Q , FAYYAD S M , MOMANI W , et al. Performance analysis of solar powered absorption refrigeration system[J]. Heat & Mass Transfer, 2009, 46 (2): 137.
23 KHAN M M A , IBRAHIM N I , SAIDUR R , et al. Performance assessment of a solar powered ammonia—water absorption refrigeration system with storage units[J]. Energy Conversion & Management, 2016, 126, 316- 328.
[1] 韩方运, 乔梁, 赵斌成, 张利. 基于分时电价的加权太阳能价值电价[J]. 山东大学学报 (工学版), 2019, 49(6): 93-97.
[2] 陈海永,余力,刘辉,杨佳博,胡启迪. 基于经验小波的太阳能电池缺陷图像融合[J]. 山东大学学报 (工学版), 2018, 48(5): 24-31.
[3] 张涛, 韩吉田, 闫素英, 于泽庭, 周然. 太阳能真空管的热性能分析与测试[J]. 山东大学学报(工学版), 2014, 44(4): 76-83.
[4] 丁生平, 王永征, 吕瑞杰, 武岳, 姜磊. 基于斯特林机的碟式太阳能热发电系统性能仿真分析[J]. 山东大学学报(工学版), 2014, 44(4): 64-69.
[5] 吕明新1,2,宋固1,董震1,魏露露1, 赖艳华1*. 两级反射线性菲涅尔中高温集热系统热性能[J]. 山东大学学报(工学版), 2013, 43(2): 105-110.
[6] 赖艳华1,王庆为1,吕明新1,邵长波2,孔德旻1. R404A/CO2复叠式制冷系统的火用分析[J]. 山东大学学报(工学版), 2011, 41(6): 115-121.
[7] 薛一冰 孟光 张乐. 两种太阳能空气集热器性能比较研究[J]. 山东大学学报(工学版), 2009, 39(6): 147-149.
[8] 何云 苏新武 孙祝 徐永丽. 太阳能烟囱内非稳态自然对流温度边界层分析[J]. 山东大学学报(工学版), 2009, 39(6): 150-153.
[9] 董少光,范广涵 . InGaN太阳能电池材料电学与光学性质的辐射研究[J]. 山东大学学报(工学版), 2008, 38(4): 102-106 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 施来顺,万忠义 . 新型甜菜碱型沥青乳化剂的合成与性能测试[J]. 山东大学学报(工学版), 2008, 38(4): 112 -115 .
[2] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[3] 胡天亮,李鹏,张承瑞,左毅 . 基于VHDL的正交编码脉冲电路解码计数器设计[J]. 山东大学学报(工学版), 2008, 38(3): 10 -13 .
[4] 徐丽丽,季忠,夏继梅 . 同规格货物装箱问题的优化计算[J]. 山东大学学报(工学版), 2008, 38(3): 14 -17 .
[5] 潘多涛,刘桂萍,刘长风 . 生物絮凝剂产生菌的筛选及培养条件优化[J]. 山东大学学报(工学版), 2008, 38(3): 99 -103 .
[6] 赵勇 田四明 曹哲明. 宜万铁路复杂岩溶隧道施工地质工作方法[J]. 山东大学学报(工学版), 2009, 39(5): 91 -95 .
[7] 邓斌,王江 . 基于混沌同步与自适应控制的神经元模型参数估计[J]. 山东大学学报(工学版), 2007, 37(5): 19 -23 .
[8] 高厚磊 田佳 杜强 武志刚 刘淑敏. 能源开发新技术——分布式发电[J]. 山东大学学报(工学版), 2009, 39(5): 106 -110 .
[9] 王学平,王登杰,孙英明,董磊 . 免棱镜全站仪在桥梁检测中的应用[J]. 山东大学学报(工学版), 2007, 37(3): 105 -108 .
[10] 世文学 刘卫东 孙永福. 基于DEM的堰塞湖1/3溃决模拟及人员撤离方案研究[J]. 山东大学学报(工学版), 2009, 39(5): 144 -148 .