您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (5): 64-71.doi: 10.6040/j.issn.1672-3961.0.2019.156

• 能源与动力工程——制冷技术专题 • 上一篇    下一篇

基于SOFC的功冷联供系统热力学特性分析

王寒冰1(),刘晓辉2,田民丽1,王桂华1,于泽庭1,*(),纪少波1   

  1. 1. 山东大学能源与动力工程学院, 山东 济南 250061
    2. 潍柴动力股份有限公司, 山东 潍坊 261061
  • 收稿日期:2019-04-11 出版日期:2019-10-20 发布日期:2019-10-18
  • 通讯作者: 于泽庭 E-mail:1505369363@qq.com;yuzt@sdu.edu.cn
  • 作者简介:王寒冰(1995—),男,四川南充人,硕士研究生,主要研究方向为燃料电池与余热利用. E-mail: 1505369363@qq.com
  • 基金资助:
    国家重点研发计划项目;山东省自然科学基金资助项目(ZR2019MEE045)

Thermodynamic characteristic analysis of power and cooling system drived by SOFC

Hanbing WANG1(),Xiaohui LIU2,Minli TIAN1,Guihua WANG1,Zeting YU1,*(),Shaobo JI1   

  1. 1. School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
    2. Weichai Power Co., Ltd., Weifang 261061, Shandong, China
  • Received:2019-04-11 Online:2019-10-20 Published:2019-10-18
  • Contact: Zeting YU E-mail:1505369363@qq.com;yuzt@sdu.edu.cn
  • Supported by:
    国家重点研发计划项目;山东省自然科学基金资助项目(ZR2019MEE045)

摘要:

为提高固体燃料电池(solid oxide fuel cell, SOFC)的能源综合利用效率,提出一种基于SOFC循环、燃气轮机和吸收式制冷机的功冷联供系统。建立联供系统的热力学模型,给出设计工况下的热力学参数,对联供系统进行模拟分析。结果表明,在设计工况下,燃料电池发电效率、联供系统总发电效率和功冷联供效率分别为46.81%、54.53%和72.24%。燃料电池进口温度为620 ℃时,联供系统取得最大总发电效率和功冷联供效率,分别为54.66%和72.42%;在燃料电池进口温度为600 ℃时,联供系统输出制冷量最多。

关键词: 固体氧化物燃料电池, 吸收式制冷, 热力性能, 功冷联供

Abstract:

In order to improve the energy utilization efficiency of a solid oxide fuel cell, a combined power and cooling system which integrated a solid oxide fuel cell, a gas turbine and an absorption chiller was proposed. A mathematical model was developed, and the thermodynamic parameters of the system were given to study the system performance under steady-state conditions. Results showed that, under the given conditions, the SOFC electrical efficiency, the total electrical efficiency of combined system and the power-cooling efficiency were 46.81%, 54.53% and 72.24%, respectively. When the SOFC inlet temperature was 620 ℃, the maximum total electrical efficiency of combined system and the maximum power-cooling efficiency were obtained 54.66% and 72.42%, respectively. When the inlet temperature of fuel cell was 600 ℃, the cooling capacity of the combined supply system was the largest.

Key words: SOFC, absorption refrigeration, thermal performance, combined power and cooling

中图分类号: 

  • TM911

图1

基于SOFC-GT以及吸收式制冷机的功冷联供系统示意图 C1—燃料压缩机; C2—空气压缩机; P1—泵1;M—混合器; Ref—预重整器; AB—后燃室; GT—燃气轮机; T—透平; PH1—预热换热器1;PH2—预热换热器2;PH3—预热换热器3; PH4—预热换热器4;P2—泵2;R—回热器; G—蒸汽发生器; Rec—精馏塔; Con—冷凝器; Eva—蒸发器; Abs—吸收器; V1—膨胀阀1;V2—膨胀阀2 "

表1

化学平衡常数系数"

常数 A/10-12 B/10-8 C/10-6 D/10-2 E
置换反应 5.47 -2.574 4.637 -3.915 13.209 7
重整反应 -26.31 12.406 -225.232 19.503 -66.139 5

表2

输出电压对比"

电流密度/(A·cm-2) 电压/V 误差/%
文献[19] 本研究
0.1 0.860 0.859 -0.13
0.2 0.760 0.792 4.21
0.3 0.680 0.723 6.35
0.4 0.620 0.653 5.39
0.5 0.570 0.582 2.11
0.6 0.520 0.507 -2.60

表3

极化过电压参数"

阳极交换电流密度
j0, a/(kA·cm-2)
阴极交换电流密度
j0, a/(kA·m-2)
阳极有效气体扩散系数
Daeff/(cm2·s-1)
阴极有效气体扩散系数
Dceff/(cm2·s-1)
阳极厚度La/μm 阴极厚度Lc/μm 连接体厚度Lint/μm 电解质厚度Le/μm 阳极电导率ρa 阴极电导率ρc 电解质电导率ρe 连接体电导率ρint
6.5 2.5 0.2 0.05 500 50 500 10 (9.5×107/T×exp(-1 150/T))-1 (4.2×107/T×exp(-1 200/T))-1 (3.34×104/T×exp(-10 300/T))-1 (9.3×106/T×exp(-1 100/T))-1

表4

联供系统输入参数"

环境温度/℃ 环境压力/kPa SOFC进出口温差/℃ 燃料利用率 蒸汽碳比 SOFC进口温度/℃ 电流密度/(A·cm-2) 压缩机等熵效率 燃气轮机及透平等熵效率 泵等熵效率 后燃室燃烧效率 电流转换器效率 单电池个数 单电池面积/cm2 压缩机压比 制冷循环高压/kPa 制冷循环低压/kPa 精馏器出口氨浓度
25 101.3 100 0.85 2.5 600 0.6 0.8 0.8 0.8 0.95 0.92 1 000 100 8 1 202 300 0.999 6

表5

联供系统性能计算结果"

电压/V SOFC输出功/kW 燃气轮机输出功/kW 透平输出功/kW 联供系统对外输出净功/kW 制冷量输出/kW 功冷比 吸收式制冷机制冷系数COP SOFC发电效率/% 联供系统总发电效率/% 功冷联供效率/%
0.622 1 34 341 22 013 41 714 40 013 12 989 3.081 0.479 46.81 54.54 72.24

图2

蒸汽碳比对联供系统输出电压的影响"

图3

蒸汽碳比对联供系统输入或输出功及空气质量流量的影响"

图4

蒸汽碳比对联供系统效率及功冷比的影响"

图5

燃料电池进口温度对联供系统输出电压的影响"

图6

燃料电池进口温度对联供系统输入或输出功及空气质量流量的影响"

图7

燃料电池进口温度对联供系统效率及功冷比的影响"

1 张亚媛, 张沛龙, 葛静. 燃料电池应用现状及发展前景[J]. 新材料产业, 2014, (6): 65- 68.
doi: 10.3969/j.issn.1008-892X.2014.06.017
ZHANG Yayuan , ZHANG Peilong , GE Jing , et al. Application status and development prospect of fuel cells[J]. New Material Industry, 2014, (6): 65- 68.
doi: 10.3969/j.issn.1008-892X.2014.06.017
2 贺华, 赵景联. 燃料电池的开发现状及其发展前景[J]. 石化技术与应用, 2001, 19 (3): 205- 209.
doi: 10.3969/j.issn.1009-0045.2001.03.019
HE Hua , ZHAO Jinglian . Current aspects and treds in fuel cell[J]. Petroleum Technology and Application, 2001, 19 (3): 205- 209.
doi: 10.3969/j.issn.1009-0045.2001.03.019
3 KAILA R K , AOI K . Autothermal reforming of simulated gasoline and diesel fuels[J]. International Journal of Hydrogen Energy, 2006, 31 (13): 1934- 1941.
doi: 10.1016/j.ijhydene.2006.04.004
4 MOSELEY P T . Fuel Cell systems explained[J]. Journal of Power Sources, 2001, 93 (1): 285.
5 于泽庭, 蒙青山, 张承慧, 等. CO2近零排放固体氧化物燃料电池冷热电联供系统的性能分析[J]. 中国电机工程学报, 2017, 37 (1): 200- 208.
YU Zeting , MENG Qingshan , ZHANG Chenghui , et al. Performance analysis of CO2 near zero emission solid oxide fuel cell combined cooling heating and power system[J]. Journal of Electrical Engineering of China, 2017, 37 (1): 200- 208.
6 MENG Q , HAN J , KONG L , et al. Thermodynamic analysis of combined power generation system based on SOFC/GT and transcritical carbon dioxide cycle[J]. International Journal of Hydrogen Energy, 2017, 42 (7): 4673- 4678.
doi: 10.1016/j.ijhydene.2016.09.067
7 ZHANG Shiqi , LIU Haolun , LIU Meili , et al. An efficient integration strategy for a SOFC-GT-SORC combined system with performance simulation and parametric optimization[J]. Applied Thermal Engineering, 2017, 121 (1): 314- 324.
8 YAN Zhequan , ZHAO Pan , WANG Jiangfeng , et al. Thermodynamic analysis of an SOFC-GT-ORC integrated power system with liquefied natural gas as heat sink[J]. International Journal of Hydrogen Energy, 2013, 38 (8): 3352- 3363.
doi: 10.1016/j.ijhydene.2012.12.101
9 RANJBAR F , CHITSAZ A , MAHMOUDI S M S , et al. Energy and exergy assessments of a novel trigeneration system based on a solid oxide fuel cell[J]. Energy Conversion & Management, 2014, 87, 318- 327.
10 YU Zeting , HAN Jitian , CAO Xianqi . Investigation on performance of an integrated solid oxide fuel cell and absorption chiller tri-generation system[J]. International Journal of Hydrogen Energy, 2011, 36 (19): 12561- 12573.
doi: 10.1016/j.ijhydene.2011.06.147
11 ZHAO Hongbin , JIANG Ting , HOU Hucan . Performance analysis of the SOFC-CCHP system based on H2O/Li—Br absorption refrigeration cycle fueled by coke oven gas[J]. Energy, 2015, 91, 983- 993.
doi: 10.1016/j.energy.2015.08.087
12 AL-SULAIMAN F A , DINCER I , HAMDULLAHPUR F . Energy analysis of a trigeneration plant based on solid oxide fuel cell and organic Rankine cycle[J]. International Journal of Hydrogen Energy, 2010, 35 (10): 5104- 5113.
doi: 10.1016/j.ijhydene.2009.09.047
13 AL-SULAIMAN F A , DINCER I , HAMDULLAHPUR F . Exergy analysis of an integrated solid oxide fuel cell and organic Rankine cycle for cooling, heating and power production[J]. Journal of Power Sources, 2010, 195 (8): 2346- 2354.
doi: 10.1016/j.jpowsour.2009.10.075
14 段立强, 张潇元, 杨勇平, 等. 基于分析的CO2零排放SOFC复合动力系统研究[J]. 工程热物理学报, 2011, 32 (5): 745- 749.
DUAN Liqiang , ZHANG Xiaoyuan , YANG Yongping , et al. Exergy analysis of zero CO2 emission SOFC hybrid power system[J]. Journal of Engineering Thermophysics, 2011, 32 (5): 745- 749.
15 CHITSAZ A , HOSSEINPOUR J , ASSADI M . Effect of recycling on the thermodynamic and thermoeconomic performances of SOFC based on trigeneration systems; a comparative study[J]. Energy, 2017, 124, 613- 624.
doi: 10.1016/j.energy.2017.02.019
16 DUAN Liqiang , HUANG Kexin , ZHANG Xiaoyuan , et al. Comparison study on different SOFC hybrid systems with zero-CO2 emission[J]. Energy, 2013, 58, 66- 77.
doi: 10.1016/j.energy.2013.04.063
17 OZCAN H , DINCER I . Performance evaluation of an SOFC based trigeneration system using various gaseous fuels from biomass gasification[J]. International Journal of Hydrogen Energy, 2015, 40 (24): 7798- 7807.
doi: 10.1016/j.ijhydene.2014.11.109
18 KHANI L , MAHMOUDI S M S , CHITSAZ A , et al. Energy and exergoeconomic evaluation of a new power/cooling cogeneration system based on a solid oxide fuel cell[J]. Energy, 2016, 94, 64- 77.
doi: 10.1016/j.energy.2015.11.001
19 CHATRATTANAWET N , SAEBEA D . Performance and environmental study of a biogas-fuelled solid oxide fuel cell with different reforming approaches[J]. Energy, 2018, 146, 131- 140.
doi: 10.1016/j.energy.2017.06.125
[1] 郭英伦,郗富强,苏瑞智,李国祥,于泽庭. 基于LNG冷与燃料电池余热利用的TRCC串联系统[J]. 山东大学学报 (工学版), 2019, 49(5): 52-57.
[2] 张磊,孙奉仲*,高明. 侧风对冷却塔性能影响的特异性定量分析方法[J]. 山东大学学报(工学版), 2013, 43(5): 98-103.
[3] 张玉军,张兰,蒋三平. 采用凝胶注模工艺低温合成锶掺杂的锰酸镧粉体[J]. 山东大学学报(工学版), 2009, 39(3): 62-66.
[4] 于泽庭,韩吉田,王振 . 熔融碳酸盐燃料电池总能系统的热力学分析[J]. 山东大学学报(工学版), 2006, 36(6): 28-31 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 秦通,孙丰荣*,王丽梅,王庆浩,李新彩. 基于极大圆盘引导的形状插值实现三维表面重建[J]. 山东大学学报(工学版), 2010, 40(3): 1 -5 .
[2] 张承慧,宁勇,姬鹏 . 一种改进的FCM聚类算法及其在赤潮预测中的应用[J]. 山东大学学报(工学版), 2007, 37(6): 1 -4 .
[3] 罗运虎, 吴旭文,潘双来,董尔令,孙秀娟,王传江,吴娜 . 需求侧两种可中断负荷与发电侧备用容量的协调[J]. 山东大学学报(工学版), 2007, 37(6): 66 -70 .
[4] 徐奴文 唐春安 周济芳 唐烈先 梁正召. 锦屏二级水电站施工排水洞岩爆数值模拟[J]. 山东大学学报(工学版), 2009, 39(4): 134 -139 .
[5] 董彤 袁淑娟 葛军饴 洪芳 郁黎明 曹世勋 张金仓. 磁制冷材料Gd5Ge4中的磁玻璃态[J]. 山东大学学报(工学版), 2009, 39(3): 67 -70 .
[6] 王会青,孙宏伟,张建辉. 基于Map/Reduce的时间序列相似性搜索算法[J]. 山东大学学报(工学版), 2016, 46(1): 15 -21 .
[7] 张辉 王孟夏 韩学山. 电力系统的超前热定值及其应用探讨[J]. 山东大学学报(工学版), 2008, 38(6): 25 -29 .
[8] 李杰 刘弘. 基于遗传算法的分形艺术图案生成方法[J]. 山东大学学报(工学版), 2008, 38(6): 33 -36 .
[9] 张宏博 黄茂松 宋修广. 基于应变软化与剪胀性特征的粉砂土双硬化弹塑性本构模型[J]. 山东大学学报(工学版), 2008, 38(6): 55 -60 .
[10] 李春晓 岳钦艳 卢磊 高宝玉 杨忠莲 司晓慧 倪寿清 王元芳. 疏水缔合阳离子聚丙烯酰胺的合成与应用[J]. 山东大学学报(工学版), 2008, 38(6): 99 -104 .