您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2018, Vol. 48 ›› Issue (5): 61-68.doi: 10.6040/j.issn.1672-3961.0.2018.031

• 机器学习与数据挖掘 • 上一篇    下一篇

主从Cucker-Smale系统的有限时间蜂拥行为

刘友权(),王晨光,侍红军   

  1. 中国矿业大学数学学院, 江苏 徐州 221116
  • 收稿日期:2018-01-14 出版日期:2018-10-01 发布日期:2018-01-14
  • 作者简介:刘友权(1992—),男,湖北荆州人,硕士研究生,主要研究方向为复杂网络同步及蜂拥.E-mail: liuyouquan139866@163.com
  • 基金资助:
    国家自然科学基金资助项目(61203055);中央高校基本科研业务费资助项目(2015XKMS076);国家级大学生创新创业训练计划资助项目(201710290058)

Finite-time flocking behavior of leader-following Cucker-Smale system

Youquan LIU(),Chenguang WANG,Hongjun SHI   

  1. School of Mathematics, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
  • Received:2018-01-14 Online:2018-10-01 Published:2018-01-14
  • Supported by:
    国家自然科学基金资助项目(61203055);中央高校基本科研业务费资助项目(2015XKMS076);国家级大学生创新创业训练计划资助项目(201710290058)

摘要:

基于有限时间稳定性理论,研究主从Cucker-Smale系统的有限时间蜂拥行为。通过李雅普诺夫函数方法,得到蜂拥在有限时间发生所需的条件。研究结果表明:收敛时间和种群规模以及智能体与领导者之间的耦合强度有关。收敛时间随种群规模和耦合强度的增大而减小。在数值模拟中,速度和速度差的演化曲线证实了理论结果的可靠性。

关键词: 蜂拥, 有限时间, 主从, Cucker-Smale系统

Abstract:

Based on the finite-time stability theory, the finite-time flocking behavior of leader-following Cucker-Smale systems was studied. By using Lyapunov function approach, sufficient conditions were provided to ensure the finite-time flocking. It was shown that the convergence time depended on the group size and the coupling strength between agents and the leader. The convergence time decreased with the increasing of the group size and the coupling strength. The state trajectories of velocity and velocity error were provided to confirm the theoretical results with simulation examples.

Key words: flocking, finite time, leader-following, Cucker-Smale system

中图分类号: 

  • TP273

图1

智能体速度以及速度差演化曲线"

图2

种群规模N对于主从C-S系统收敛时间的影响"

图3

耦合强度b对于主从C-S系统收敛时间的影响"

图4

受领导者影响的智能体个数对于主从C-S系统收敛时间的影响"

1 CUCKER F , SMALE S . Emergent behavior in flocks[J]. IEEE Transactions on Automatic Control, 2007, 52 (5): 852- 862.
doi: 10.1109/TAC.2007.895842
2 WAN Z . Flocking for multi-agent dynamical systems[M]. Saarland Saarbrücken, Germany: Lap Lambert Academic Publishing, 2012.
3 YU W , CHEN G , CAO M . Distributed leader-follower flocking control for multi-agent dynamical systems with time-varying velocities[J]. Systems & Control Letters, 2010, 59 (9): 543- 552.
4 DONG J , QIU L . Flocking of the Cucker-Smale model on general digraphs[J]. IEEE Transactions on Automatic Control, 2017, 62 (10): 5234- 5239.
doi: 10.1109/TAC.2016.2631608
5 RU L , XUE X . Multi-cluster flocking behavior of the hierarchical Cucker-Smale model[J]. Journal of the Franklin Institute Engineering & Applied Mathematics, 2017, 354 (5): 2371- 2392.
6 LU J , HO D W , KURTHS J . Consensus over directed static networks with arbitrary finite communication delays[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2009, 80 (2): 066121.
7 GUAN Z , LIU Z , FENG G , et al. Impulsive consensus algorithms for second-order multi-agent networks with sampled information[J]. Automatica, 2012, 48 (7): 1397- 1404.
doi: 10.1016/j.automatica.2012.05.005
8 ZHAO H , JU H . Dynamic output feedback consensus of continuous-time networked multi-agent systems[M]. New Jersey Hoboken, USA: John Wiley & Sons, Inc, 2015.
9 LEE T H , JU H P , JI D H , et al. Leader-following consensus problem of heterogeneous multi-agent systems with nonlinear dynamics using fuzzy disturbance observer[J]. Complexity, 2014, 19 (4): 20- 31.
doi: 10.1002/cplx.v19.4
10 WANG X , SONG J . Synchronization of the fractional order hyberchaos Lorenz systems with activation feedback control[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14 (8): 3351- 3357.
doi: 10.1016/j.cnsns.2009.01.010
11 WANG X , HE Y . Projective synchronization of fractional order chaotic system based on linear separation[J]. Physics Letters A, 2008, 372 (4): 435- 441.
doi: 10.1016/j.physleta.2007.07.053
12 WANG X , WANG M . Dynamic analysis of the fractional-order liu system and its synchronization[J]. Chaos, 2007, 17 (3): 033106.
doi: 10.1063/1.2755420
13 LIN D , WANG X . Observer-based decentralized fuzzy neural sliding mode control for interconnected unknown chaotic systems via network structure adaptation[J]. Fuzzy Sets and Systems, 2010, 161 (15): 2066- 2080.
doi: 10.1016/j.fss.2010.03.006
14 ABD-ELAZIM S M , ALI E S . A hybrid particle swarm optimization and bacterial foraging for power system stability enhancement[J]. International Journal of Electrical Power & Energy Systems, 2013, 46 (2): 334- 341.
15 COUZIN I D , KRAUSE J , FRANKS N R , et al. Effective leadership and decision-making in animal groups on the move[J]. Nature, 2005, 433 (7025): 513.
doi: 10.1038/nature03236
16 KATZ Y , TUNSTRØM K , LOANNOU C C , et al. Inferring the structure and dynamics of interactions in schooling fish[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108 (46): 18720- 18725.
doi: 10.1073/pnas.1107583108
17 TOPAZ C M , BERTOZZI A L , LEWIS M A . A nonlocal continuum model for biological aggregation[J]. Bull Math Biol, 2006, 68 (7): 1601.
doi: 10.1007/s11538-006-9088-6
18 ZHANG H P , BE'ER A , FLORIN E L , et al. Collective motion and density fluctuations in bacterial colonies[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107 (31): 13626- 13630.
doi: 10.1073/pnas.1001651107
19 VICSEK T , CZIROK A , BEN-JACOB E , et al. Novel type of phase transition in a system of self-driven particles[J]. Physical Review Letters, 1995, 75 (6): 1226.
doi: 10.1103/PhysRevLett.75.1226
20 VICSEK T , ZAFEIRIS A . Collective motion[M]. Berlin Heidelberg, Germany: Springer, 1999: 152- 164.
21 JADBABAIE A , LIN J , MORSE A S . Coordination of groups of mobile autonomous agents using nearest neighbor rules[J]. IEEE Transactions on Automatic Control, 2003, 48 (6): 988- 1001.
doi: 10.1109/TAC.2003.812781
22 LIU Y , WU J . Flocking and asymptotic velocity of the Cucker-Smale model with processing delay[J]. Journal of Mathematical Analysis & Applications, 2014, 415 (1): 53- 61.
23 HA S Y , LEE K , LEVY D . Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system[J]. Communications in Mathematical Sciences, 2009, 7 (2009): 453- 469.
24 SUN Y , LIN W . A positive role of multiplicative noise on the emergence of flocking in a stochastic Cucker-Smale system[J]. Chaos an Interdisciplinary Journal of Nonlinear Science, 2015, 16 (8): 852.
25 TON T V , LINH N T H , YAGI A . Flocking and non-flocking behavior in a stochastic Cucker-Smale system[J]. Analysis & Applications, 2014, 12 (1): 63- 73.
26 SHEN J . Cucker-Smale flocking under hierarchical leadership[J]. Siam Journal on Applied Mathematics, 2007, 68 (3): 694- 719.
27 CUCKER F , DONG J G . On the critical exponent for flocks under hierarchical leadership[J]. Mathematical Models & Methods in Applied Sciences, 2009, 19 (suppl.1): 1391- 1404.
28 LI Z , XUE X . Cucker-Smale flocking under rooted leadership with fixed and switching topologies[J]. Siam Journal on Applied Mathematics, 2010, 70 (7-8): 3156- 3174.
29 DALMAO F, MORDECKI E. Cucker-Smale flocking under hierarchical leadership and random interactions[J]. 2010, 71(4): 1307-1316.
30 LI Z , XUE X . Cucker-Smale flocking under rooted leadership with free-will agents[J]. Physica A Statistical Mechanics & Its Applications, 2014, 410 (12): 205- 217.
31 HAN Y , ZHAO D , SUN Y . Finite-time flocking problem of a Cucker-Smale-type self-propelled particle model[J]. Complexity, 2016, 21 (Suppl.1): 354- 361.
32 SUN Y , LIN W . A positive role of multiplicative noise on the emergence of flocking in a stochastic Cucker-Smale system[J]. Chaos, 2015, 16 (8): 852.
33 OLFATI-SABER R , MURRAY R M . onsensus problems in networks of agents with switching topology and time-delays[J]. IEEE Trans. Automat. Control, 2004, 49, 1520- 1532.
doi: 10.1109/TAC.2004.834113
34 JIANG F , WANG L . Finite-time information consensus for multi-agent systems with fixed and switching topologies[J]. Physical D Nonlinear Phenomena, 2009, 238 (16): 1550- 1560.
doi: 10.1016/j.physd.2009.04.011
35 HORN R A , JOHNSON C R . Matrix Analysis[M]. Cambridge: Cambridge University Press, 1985.
36 WANG H , HAN Z Z , XIE Q Y , et al. Finite-time synchronization of uncertain unified chaotic systems based on CLF[J]. Nonlinear Analysis Real World Applications, 2009, 10 (5): 2842- 2849.
doi: 10.1016/j.nonrwa.2008.08.010
37 WANG L , FENG X . Finite-time consensus problems for networks of dynamic agents[J]. IEEE Transactions on Automatic Control, 2010, 55 (4): 950- 955.
doi: 10.1109/TAC.2010.2041610
[1] 周绍伟. 随机Markov跳跃系统有限时间稳定性[J]. 山东大学学报(工学版), 2016, 46(2): 78-84.
[2] 李小华, 严慰, 刘洋. 广义扩展大系统的鲁棒分散有限时间关联镇定[J]. 山东大学学报(工学版), 2015, 45(6): 16-28.
[3] 沈艳军1,吴超艳2. 一类链式系统部分变元渐近稳定、有限时间稳定观测器设计[J]. 山东大学学报(工学版), 2013, 43(6): 42-46.
[4] 李望1,2,石咏2,马继伟2. 复杂动力学网络的有限时间外部同步[J]. 山东大学学报(工学版), 2013, 43(2): 48-53.
[5] 赵占山1,2, 张静3, 孙连坤1, 丁刚1. 有限时间收敛的滑模自适应控制器设计[J]. 山东大学学报(工学版), 2012, 42(4): 74-78.
[6] 杨仁明,王玉振*. 一类非线性时滞系统的有限时间稳定性[J]. 山东大学学报(工学版), 2012, 42(2): 36-44.
[7] 马世敏,王玉振. 一类广义Hamilton系统的有限时间稳定性及其在仿射非线性系统控制设计中的应用[J]. 山东大学学报(工学版), 2011, 41(2): 119-125.
[8] 乔伟1,王汇源1,2,吴晓娟1,刘鹏威1. 基于混沌动力学模型的群体目标检测与分类[J]. 山东大学学报(工学版), 2010, 40(2): 19-23.
[9] 邓修成,沈艳军,方胜乐 . 多输入-多输出线性系统有限时间观测器设计方法[J]. 山东大学学报(工学版), 2008, 38(4): 17-21 .
[10] 辛道义,刘允刚 . 非线性系统有限时间稳定性分析与控制设计[J]. 山东大学学报(工学版), 2007, 37(3): 24-30 .
[11] 丁玉琴,刘允刚 . 一类非线性系统有限时间函数观测器设计方法[J]. 山东大学学报(工学版), 2007, 37(1): 56-60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孟健, 李贻斌, 李彬. 四足机器人跳跃步态控制方法[J]. 山东大学学报(工学版), 2015, 45(3): 28 -34 .
[2] 何东之, 张吉沣, 赵鹏飞. 不确定性传播算法的MapReduce并行化实现[J]. 山东大学学报(工学版), 0, (): 22 -28 .
[3] 张建明, 刘泉声, 唐志成, 占婷, 蒋亚龙. 考虑剪切变形历史影响的节理峰值剪切强度准则[J]. 山东大学学报(工学版), 0, (): 77 -81 .
[4] 王换,周忠眉. 一种基于聚类的过抽样算法[J]. 山东大学学报(工学版), 2018, 48(3): 134 -139 .
[5] 肖乔, 裴继红, 王荔霞, 龚志成. 基于多通道Gabor滤波模糊融合的遥感图像舰船检测[J]. 山东大学学报(工学版), 0, (): 29 -35 .
[6] 马相明, 孙霞, 张强. 轮式装载机典型作业工况构建与分析[J]. 山东大学学报(工学版), 0, (): 82 -87 .
[7] 王兰忠, 孟文杰. 远程教育中视频感知加密算法[J]. 山东大学学报(工学版), 2015, 45(4): 40 -44 .
[8] 梁泽华,崔耀东,张雨. 有顺序依赖损耗的一维下料问题[J]. 山东大学学报(工学版), 2018, 48(3): 75 -80 .
[9] 朱登元, 姚占勇, 葛守仁. 柱式桥台前坡改造数值分析与现场检测[J]. 山东大学学报(工学版), 2015, 45(3): 86 -94 .
[10] 叶明全,高凌云,万春圆. 基于人工蜂群和SVM的基因表达数据分类[J]. 山东大学学报(工学版), 2018, 48(3): 10 -16 .