山东大学学报 (工学版) ›› 2018, Vol. 48 ›› Issue (5): 38-46.doi: 10.6040/j.issn.1672-3961.0.2017.552
Guangli LI1(),Bin LIU1,Tao ZHU1,Yi YIN2,Hongbin ZHANG2,3
摘要:
在跨媒体检索中,准确利用异构媒体间的语义相关性是制约检索性能优劣的关键因素之一。提出改进的核典型相关分析(modified kernel canonical correlation analysis, MKCCA)模型,以改善跨媒体检索性能:抽取图像的尺度不变特征变换(scale invariant feature transform, SIFT)与描述灰度纹理的空间包络特征(GIST),抽取文本的词频(term frequency, TF)特征;精选映射核,把图像、文本特征映射到高维可分空间中,生成核矩阵;基于典型相关分析(canonical correlation analysis, CCA)方法挖掘图像、文本核矩阵间的非线性语义相关性;设置语义相关度阈值,降低语义噪声干扰并优选核心典型相关分量,更准确、鲁棒地刻画图像与文本间的语义关联。试验表明:SIFT-TF特征组合整体表现最好,而MKCCA模型与高斯核(gauss kernel)配合可获取最优跨媒体检索性能,其图像检索文本与文本检索图像的平均精度均值(mean average precision, MAP)较次优指标分别提升3.06%和1.18%。
中图分类号:
1 |
HODOSH M , YOUNG P , HOCKENMAIER J . Framing image description as a ranking task: Data, models and evaluation metrics[J]. Journal of Artificial Intelligence Resource, 2013, 47, 853- 899.
doi: 10.1613/jair.3994 |
2 | KIROS R, SALAKHUTDINOV R, ZEMEL R. Multimodal Neural Language Models[C]//Proceedings of International Conference on Machine Learning, 2014. New York: ACM, 2014: 595-603. |
3 | LI P, MA J, GAO S. Learning to summarize web image and text mutually[C]//Proceedings of ACM International Conference on Multimedia Retrieval. New York: ACM, 2012: 1-8. |
4 | 李广丽, 陈婧琳, 刘斌, 等. 基于Tag-rank和典型相关性分析的在线商品跨媒体检索研究[J]. 科学技术与工程, 2016, 16 (4): 222- 227. |
LI Guangli , CHEN Jinglin , LIU Bin , et al. Cross-media retrieval of online product based on tag-rank and CCA[J]. Science Technology and Engineering, 2016, 16 (4): 222- 227. | |
5 | WU F, ZHANG H, ZHUANG Y T. Learning semantic correlations for cross-media retrieval[C]//Proceedings of International Conference on Image Processing. Piscataway, NJ: IEEE, 2006: 1465-1468. |
6 | WU F, YANG Y, ZHUANG Y T, et al. Understanding multimedia document semantics for cross-media retrieval[C]//Proceedings of Pacific-rim Conference on Advances in Multimedia Information Processing. Berlin Heidelberg: Springer, 2006, 4261: 979-988. |
7 | RASIWASIA N, COSTA P J, COVIELLO E, et al. A new approach to cross-modal multimedia[C]//Proceedings of Acm International Conference on Multimedia. New York: ACM, 2010: 251-260. |
8 | WANG Xikui, LIU Yang, WANG Donghui, et al. Cross-media Topic Mining on Wikipedia[C]//Proceedings of Acm International Conference on Multimedia. New York: ACM, 2013: 689-692. |
9 | SVANTE Wold . Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, (2): 37- 52. |
10 | STONE James . Encyclopedia of statistics in behavioral science[M]. Chichester: John Wiley & Sons, 2005. |
11 | VINZI V E , CHIN W , HENSELER J , et al. Handbook of partial least squares: concepts, methods and applications[M]. Berlin: Springer, 2010. |
12 |
HARDOON D R , SZEDMAK S , SHAWE Taylor J . Canonical correlation analysis: an overview with application to learning methods[J]. Neural Computation, 2004, 16 (12): 2639- 2664.
doi: 10.1162/0899766042321814 |
13 | AKAHO S. A kernel method for canonical correlation analysis[C]//Proceedings of the International Meeting of the Psychometric Society. New York: ACM, 2001, 40(2): 263-269 |
14 | BLEI D, JORDAN M. Modeling annotated data[C]//Proceedings of International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2003: 127-134. |
15 |
戴晓娟. 基于SVM线性核函数情感分类模型的建立和研究[J]. 哈尔滨师范大学自然科学学报, 2014, 30 (3): 55- 57.
doi: 10.3969/j.issn.1000-5617.2014.03.018 |
DAI Xiaojuan . The establishment and emotion research of the linear kernel based on SVM classification model[J]. Natural Sciences Journal of Harbin Normal University, 2014, 30 (3): 55- 57.
doi: 10.3969/j.issn.1000-5617.2014.03.018 |
|
16 | 赵莹.支持向量机中高斯核函数的研究[D].上海:华东师范大学, 2007. |
ZHAO Ying. Research on gauss kernel in support vector machine[D]. Shanghai: East China Normal University, 2007. | |
17 | 赵金伟, 冯博琴, 闫桂荣. 基于正交多项式核函数方法[J]. 计算机技术与发展, 2012, 22 (5): 177- 179, 184. |
ZHAO Jinwei , FENG Boqin , YAN Guirong . Review of chebyshev kernel functions[J]. Computer Technology and Development, 2012, 22 (5): 177- 179, 184. | |
18 | 姚志均, 刘俊涛, 周瑜, 等. 基于对称KL距离的相似性度量方法[J]. 华中科技大学学报(自然科学版), 2011, 39 (11): 1- 4, 38. |
YAO Zhijun , LIU Juntao , ZHOU Yu , et al. Similarity measure method using symmetric KL divergence[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2011, 39 (11): 1- 4, 38. | |
19 |
FENG Yansong , LAPAPTA M . Automatic caption generation for news images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 (4): 797- 812.
doi: 10.1109/TPAMI.2012.118 |
20 |
张红斌, 姬东鸿, 尹兰, 等. 基于关键词精化和句法树的商品图像句子标注[J]. 计算机研究与发展, 2016, 53 (11): 2542- 2555.
doi: 10.7544/issn1000-1239.2016.20150906 |
ZHANG Hongbin , JI Donghong , YIN Lan , et al. Caption generation from product image based on tag refinement and syntactic tree[J]. Journal of Computer Research and Development, 2016, 53 (11): 2542- 2555.
doi: 10.7544/issn1000-1239.2016.20150906 |
|
21 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2016: 770-778. |
22 | KIM Yoon. Convolutional neural networks for sentence classification[C]//Proceedings of Conference on Empirical Methods on Natural Language Processing. Stroudsburg, PA: ACL, 2014: 1746-1751. |
[1] | 张思懿1,2,王士同1*. 核化空间深度间距的特征提取方法[J]. 山东大学学报(工学版), 2012, 42(3): 45-51. |
|