山东大学学报 (工学版) ›› 2018, Vol. 48 ›› Issue (5): 47-54.doi: 10.6040/j.issn.1672-3961.0.2018.207
Pu ZHANG1(),Chang LIU1,Yong WANG2
摘要:
建议挖掘作为一项新兴研究任务近年来逐渐受到了研究者的关注。与英文相比,中文的建议表达形式更为丰富,呈现出许多不同特点,因此有必要在中文环境下开展建议挖掘研究。针对建议挖掘中的建议语句检测这一核心任务,提出一种综合应用Stacking和Bagging方法的集成学习模型来进行建议语句分类。使用Stacking组合分类器来构建概率特征空间,分别使用卷积神经网络(convolutional neural network, CNN)和段落向量模型(paragraph vector, PV)构建评论文本的CNN特征空间和段落向量特征空间,对上述特征进行融合,并训练Bagging分类器来对建议语句分类。在中文数据集上的试验结果验证了本研究模型的有效性。
中图分类号:
1 | 赵妍妍, 秦兵, 刘挺. 文本情感分析[J]. 软件学报, 2010, 21 (8): 1834- 1848. |
ZHAO Yanyan , QIN Bing , LIU Ting . Sentiment analysis[J]. Journal of Software, 2010, 21 (8): 1834- 1848. | |
2 | 李然, 林政, 林海伦, 等. 文本情绪分析综述[J]. Journal of Computer Research and Development, 2018, (55): 30- 52. |
LI Ran , LIN Zheng , LIN Hailun , et al. Text emotion analysis: a survey[J]. Journal of Computer Research and Development, 2018, (55): 30- 52. | |
3 | 刘兵.情感分析:挖掘观点、情感和情绪[M].北京:机械工业出版社, 2017.07. |
4 | NEGI S. Suggestion mining from opinionated text[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics—Student Research Workshop. Association for Computational Linguistics. Stroudsburg, USA: ACL, 2016: 7-12. |
5 | RAMANAND J, BHAVSAR K, PEDANEKAR N. Wishful thinking: finding suggestions and 'buy' wishes from product reviews[C]//Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text. Stroudsburg, USA: ACL, 2010: 54-61. |
6 | BRUN C , HAGEGE C . Suggestion mining: detecting suggestions for improvement in users' comments[J]. Research in Computing Science, 2013, (70): 199- 209. |
7 | NEGI S, BUITELAAR P. Curse or boon? presence of subjunctive mood in opinionated text[C]//Proceedings of the 11th International Conference on Computational Semantics. Stroudsburg, USA: ACL, 2015: 101-106. |
8 | WICAKSONO A F, MYAENG S H. Automatic extraction of advice-revealing sentences for advice mining from online forums[C]//International Conference on Knowledge Capture. New York, USA: ACM, 2013: 97-104. |
9 | DONG Li, WEI Furu, DUAN Yajuan, et al. The automated acquisition of suggestions from tweets[C]//Proceedings of the Twenty-Seventh American Association for Artificial Intelligence. Menlo Park, Canada: AAAI, 2013: 239-245. |
10 | LAI Siwei, XU Liheng, LIU Kang, et al. Recurrent convolutional neural networks for text classification[C]//Twenty-Ninth AAAI Conference on Artificial Intelligence. Texas Austin, USA: AAAI, 2015: 2267-2273. |
11 | YANG Zichao, YANG Diyi, DYER C, et al. Hierarchical attention networks for document classification[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. SAN Diego, USA: NAACL, 2016: 1480-1489. |
12 | NEGI S, ASOOJA K, MEHROTRA S, et al. A study of suggestions in opinionated texts and their automatic detection[C]//Proceedings of the Fifth Joint Conference on Lexical and Computational Semantics. Stroudsburg, USA: ACL, 2016: 170-178. |
13 | 孙松涛, 何炎祥. 基于CNN特征空间的微博多标签情感分类[J]. 工程科学与技术, 2017, 49 (3): 162- 169. |
SUN Songtao , HE Yanxiang . Multi-label emotion classification for microblog based on CNN feature space[J]. Advanced Engineering Sciences, 2017, 49 (3): 162- 169. | |
14 | LE Q, MKOLOV T. Distributed representations of sentences and documents[C]//Proceedings of the 31st International Conference on Machine Learning. Beijing, China: ICML, 2014: 1188-1196. |
15 |
李寿山, 黄居仁. 基于Stacking组合分类方法的中文情感分类研究[J]. 中文信息学报, 2010, 24 (5): 56- 61.
doi: 10.3969/j.issn.1003-0077.2010.05.010 |
LI Shoushan , HUANG Juren . Chinese sentiment classification based on stacking combination method[J]. Journal of Chinese Information Processing, 2010, 24 (5): 56- 61.
doi: 10.3969/j.issn.1003-0077.2010.05.010 |
|
16 | 李恒超, 林鸿飞, 杨亮, 等. 一种用于构建用户画像的二级融合算法框架[J]. 计算机科学, 2018, 45 (1): 157- 161. |
LI Hengchao , LIN Hongfei , YANG Liang , et al. Two-level stacking algorithm framework for building user portrait[J]. Computer Science, 2018, 45 (1): 157- 161. | |
17 | KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2014: 1746-1751. |
18 | NGUYEN T H, GRISHMAN R. Relation extraction: perspective from convolutional neural networks[C]//Proceedings of the NAACL Workshop on Vector Space Modeling for NLP. Denver Colorado, Canada: NAACL, 2015: 39-48. |
19 | CHENG T, GUESTRIN C. Xgboost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD Inernational Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2016: 785-794. |
20 | 三星电子.三星盖乐世社区产品建议论坛[EB/OL]. [2018-07-23]. http://www.galaxyclub.cn/bbs/productadvicearea/productadvice. |
[1] | 沈冬冬,周风余,栗梦媛,王淑倩,郭仁和. 基于集成深度神经网络的室内无线定位[J]. 山东大学学报 (工学版), 2018, 48(5): 95-102. |
[2] | 梁蒙蒙,周涛,夏勇,张飞飞,杨健. 基于PSO-ConvK卷积神经网络的肺部肿瘤图像识别[J]. 山东大学学报 (工学版), 2018, 48(5): 77-84. |
[3] | 何正义,曾宪华,郭姜. 一种集成卷积神经网络和深信网的步态识别与模拟方法[J]. 山东大学学报(工学版), 2018, 48(3): 88-95. |
[4] | 谢志峰,吴佳萍,马利庄. 基于卷积神经网络的中文财经新闻分类方法[J]. 山东大学学报(工学版), 2018, 48(3): 34-39. |
[5] | 赵彦霞, 王熙照. 基于SVD和DCNN的彩色图像多功能零水印算法[J]. 山东大学学报(工学版), 2018, 48(3): 25-33. |
[6] | 牟春倩,唐雁. 融合整体和局部信息的三维模型检索方法[J]. 山东大学学报(工学版), 2016, 46(6): 48-53. |
[7] | 王斌,常发亮,刘春生. 基于多特征融合的交通标志分类[J]. 山东大学学报(工学版), 2016, 46(4): 34-40. |
[8] | 王立宏,李强. 旅行商问题的一种选择性集成求解方法[J]. 山东大学学报(工学版), 2016, 46(1): 42-48. |
[9] | 陈大伟,闫昭*,刘昊岩. SVD系列算法在评分预测中的过拟合现象[J]. 山东大学学报(工学版), 2014, 44(3): 15-21. |
[10] | 孔超1,2,张化祥1,2*,刘丽1,2. 基于兴趣区域特征融合的半监督图像检索算法[J]. 山东大学学报(工学版), 2014, 44(3): 22-28. |
[11] | 徐姗姗,刘应安*,徐昇. 基于卷积神经网络的木材缺陷识别[J]. 山东大学学报(工学版), 2013, 43(2): 23-28. |
[12] | 房晓南1,2,张化祥1,2*,高爽1,2. 基于SMOTE和随机森林的Web spam检测[J]. 山东大学学报(工学版), 2013, 43(1): 22-27. |
[13] | 张伶卫,万文强. 基于云计算平台的代价敏感集成学习算法研究[J]. 山东大学学报(工学版), 2012, 42(4): 19-23. |
[14] | 谢伙生,刘敏. 一种基于主动学习的集成协同训练算法[J]. 山东大学学报(工学版), 2012, 42(3): 1-5. |
[15] | 李小斌1, 李世银2. 时间序列早期分类的多分类器集成方法[J]. 山东大学学报(工学版), 2011, 41(4): 73-78. |
|