您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2018, Vol. 48 ›› Issue (4): 88-93.doi: 10.6040/j.issn.1672-3961.0.2017.616

• 机器学习与数据挖掘 • 上一篇    下一篇

磁悬浮作动器的串级PID控制设计与试验

吴华春1,2,谢思源1,陈昌皓1   

  1. 1. 武汉理工大学机电工程学院, 湖北 武汉 430070;2. 湖北省磁悬浮工程技术中心, 湖北 武汉 430070
  • 收稿日期:2017-09-14 出版日期:2018-08-20 发布日期:2017-09-14
  • 作者简介:吴华春(1976—),男,江苏南京人,教授,博导,博士,主要研究方向为磁悬浮轴承. E-mail:whc@whut.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(51275371);中央高校基本科研业务费专项资金资助项目(2016Ⅲ033)

Design and experiment of cascade PID control for Maglev actuator

WU Huachun1,2, XIE Siyuan1, CHEN Changhao1   

  1. 1. School of Mechanical and Electrical Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China;
    2. Hubei Provincial Engineering Technology Research Center for Magnetic Suspension, Wuhan 430070, Hubei, China
  • Received:2017-09-14 Online:2018-08-20 Published:2017-09-14

摘要: 为提高主动隔振系统的稳定性和改善系统的控制质量,利用系统辨识得到磁悬浮作动器控制通道的数学模型并设计相应的串级比例-积分-微分(proportion-integral-derivative, PID)控制器:系统的内环为加速度环,主要控制隔振台的加速度;系统的外环为位移环,使隔振台回到中心位置并调节加速度控制器的参考值。利用一阶系统理论分析串级PID控制的动态性能,通过在Matlab中建立串级PID仿真控制模型验证理论结果,利用单自由度试验平台设计串级PID控制系统,对比试验和仿真加速度传递率,分析加速度控制效果。试验结果表明:采用串级PID控制方法,控制对象在1~25 Hz频段内的衰减幅度为-22.5~-2.2 dB,实现了有效的振动控制。

关键词: 主动隔振, 磁悬浮作动器, 系统辨识, 动态性能分析, 串级PID控制

Abstract: In order to improve the stability of the active vibration isolation system and improve the control quality of the system, the mathematical model of the control channel of the Maglev actuator was obtained by the system identification and the corresponding cascade PID controller was designed. The inner loop of the system was the acceleration loop, which mainly controlled the acceleration of the vibration isolator. The main loop of the system was the position loop, which made the isolator back to the center position and adjusted the reference value of the acceleration controller. The dynamic performance of cascade PID control was theoretically analyzed by the first order system theory; the theoretical results were verified by the establishment of a cascade PID simulation control model in Matlab. Then cascade PID control system was designed by the single degree of freedom experimental platform; the experiment and simulation of acceleration transfer rate was compared; the effect of acceleration control was analyzed. The experimental results showed that the cascade PID control method could make the attenuation range of the control object in the range of 1~25 Hz frequency between -22.5 dB and -2.2 dB, achieved effective vibration control.

Key words: active vibration isolation, Maglev actuator, system identification, dynamic performance analysis, cascade PID control

中图分类号: 

  • TP13
[1] WU Qianqian, YUE Honghao, LIU Rongqiang, et al. Parametric design and multiobjective optimization of maglev actuators for active vibration isolation system[J]. Advances in Mechanical Engineering, 2015, 6(8): 215358-215358.
[2] LI Weipeng, HUANG Hai, ZHOU Xubin, et al. Design and experiments of an active isolator for satellite micro-vibration[J]. Chinese Journal of Aeronautics, 2014, 27(6): 1461-1468.
[3] EDBERG D, BOUCHER R, NURRE G, et al. Performance assessment of the STABLE microgravity vibration isolation flight demonstration[C] //Structures, Structural Dynamics, and Materials Conference. Boston, America: AIAA, 1997: 7-10.
[4] WOODARD S, HOUSNER J. Nonlinear behavior of a passive zero spring-rate suspension system[J]. Journal of Guidance Control and Dynamics, 1991, 14(1): 84-89.
[5] 王佳. 高微重力平台主动振动隔离系统控制器设计与仿真试验[D]. 北京: 中国科学院研究生院, 2011.
[6] 李宗峰, 任维佳. 空间微重力主动隔振技术研究[J]. 载人航天, 2010, 16(3): 24-32. LI Zongfeng, REN Weijia. Study on the space microgravity active vibration isolation techniques[J]. Manned Spaceflight, 2010, 16(3): 24-32.
[7] YANG Bongjun, CALISE A, CRAIG J, et al. Adaptive control for a microgravity vibration isolation system[C] //Navigation, and Control Conference and Exhitbt. San Francisco, USA: AIAA Guidance, 2005:1-19.
[8] 赵伟. 航天器微振动环境分析与测量技术发展[J]. 航天器环境工程, 2006, 23(4): 210-214. ZHAO Wei. Analysis on micro-vibration environment of spacecraft and measurement technology[J]. Spacecraft Environment Engineering, 2006, 23(4): 210-214.
[9] CARRELLA A, BRENNAN M, WATERS T. Static analysis of a quasi-zero-stiffness vibration isolator[J]. Journal of Sound and Vibration, 2007, 301: 678-689.
[10] 安峰岩, 孙红灵, 肖椽生,等. 基于磁悬浮作动器的自适应有源振动控制研究[J]. 声学学报, 2010, 35(2):146-153. AN Fengyan, SUN Hongling, XIAO Chuansheng, et al. Research on adaptive active vibration control using maglev actuator[J]. Journal of Acoustics, 2010, 35(2): 146-153.
[11] HU Yefa, CHEN Changhao, WU Huachun, et al. Study on structural optimization design and cascade PID control of maglev actuator for active vibration isolation system[J]. Journal of Vibration & Control, 2017, 24(10):1829-1847.
[12] KIM Y, WHORTON M. Equations of motion for the g-LIMIT microgravity vibration isolation system[R]. Alabama, USA:Marshall Space Flight Center, 2001.
[13] 段小帅. 磁悬浮隔振器的动态建模与自收敛控制[D]. 合肥: 中国科学技术大学, 2010.
[14] 宋春生. 柔性浮筏系统的磁悬浮主动隔振理论与控制技术研究[D]. 武汉: 武汉理工大学, 2011. SONG Chunsheng. Study on theory and control technology of magnetic suspension active vibration isolation for flexible floating raft system[D]. Wuhan: Wuhan University of Technology, 2011.
[15] HE Wei, DAVID A, YIN Zhao, et al. Neural network control of a robotic manipulator with input deadzone and output constraint[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2016, 46(6): 759-770.
[16] WHORTON M. Robust control for microgravity vibration isolation with parametric uncertainty[C] //American Control Conference:vol.1. Montréal, Canada: IEEE, 2002: 256-261.
[17] 文增红. 基于BP神经网络PID的控制系统研究[J]. 电脑知识与技术, 2013(28): 6375-6377. WEN Zenghong. The control system researching based on BP neural network PID[J]. Computer Knowledge and Technology, 2013(28): 6375-6377.
[18] 陈波. 基于神经网络PID控制的两轮自平衡小车研究[D]. 成都: 西南交通大学, 2014. CHEN Bo. The research of two-wheeled self-balanced vehicle based on PID neural network[D]. Chengdu: Southwest Jiao Tong University, 2014.
[1] 刘菲菲,李建平,陈国强,罗斯特,李增勇*. 坐姿下人体振动特性建模及实验分析[J]. 山东大学学报(工学版), 2012, 42(4): 103-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[2] 邓斌,王江 . 基于混沌同步与自适应控制的神经元模型参数估计[J]. 山东大学学报(工学版), 2007, 37(5): 19 -23 .
[3] 高厚磊 田佳 杜强 武志刚 刘淑敏. 能源开发新技术——分布式发电[J]. 山东大学学报(工学版), 2009, 39(5): 106 -110 .
[4] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111 -116 .
[5] 丑武胜 王朔. 大刚度环境下力反馈主手自适应算法研究[J]. 山东大学学报(工学版), 2010, 40(1): 1 -5 .
[6] 李国正1,史淼晶1,李福凤2,王忆勤2. 舌体图像分割技术的实验分析与改进[J]. 山东大学学报(工学版), 2010, 40(5): 87 -95 .
[7] 张建明, 刘泉声, 唐志成, 占婷, 蒋亚龙. 考虑剪切变形历史影响的节理峰值剪切强度准则[J]. 山东大学学报(工学版), 0, (): 77 -81 .
[8] 雷小锋1,庄伟1,程宇1,丁世飞1,谢昆青2. OPHCLUS:基于序关系保持的层次聚类算法[J]. 山东大学学报(工学版), 2010, 40(5): 48 -55 .
[9] 王俊光 梁冰. 孔隙压力作用下泥岩三轴蠕变实验研究[J]. 山东大学学报(工学版), 2009, 39(3): 135 -138 .
[10] 李海东 田岚 李树忱. 基于二次时差法的隧道施工探测仪的设计与实现[J]. 山东大学学报(工学版), 2009, 39(4): 74 -77 .