山东大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (3): 96-102.doi: 10.6040/j.issn.1672-3961.0.2017.404
读习习,刘华锋,景丽萍*
DU Xixi, LIU Huafeng, JING Liping*
摘要: 为解决用户冷启动问题并提高推荐算法的评分预测精度,提出一种融合社交网络的叠加联合聚类推荐模型(SN-ACCRec),将用户社交关系融合到对评分矩阵的用户聚类中。根据社交关系理论分析用户社交关系,采用模糊C均值聚类的思想划分用户块,并利用k均值算法对评分矩阵的产品聚类,得到一次联合聚类结果。通过迭代方式获取用户和产品多层联合聚类结果,不断叠加多层聚类结果来近似评分矩阵,预期先后得到用户和产品的泛化和细化类别,实现对评分矩阵中缺失值的预测。采用十重交叉验证法对模型评估,试验结果表明,该模型有效降低了推荐中的平均绝对误差(mean absolute error, MAE)和均方根误差(root mean square error, RMSE),同时在冷启动用户上也表现出了较好地推荐性能。
中图分类号:
[1] FOGARAS D, RACZ B. Towards scaling fully personalized pagerank[C] //Algorithms and Models for the Web-Graph: Third International Workshop, WAW 2004. Berlin, Germany: Springer, 2004:105-117. [2] HAN D, LIU B, SUN Y. The research on collaborative filtering in personalization recommendation system[J]. Advanced Materials Research, 2013, 846-847:1137-1140. [3] KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009,42(8):30-37. [4] JAMALI M, ESTER M. Trustwalker: a random walk model for combining trustbased and item-based recommendation[C] //Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France: ACM, 2009:397-406. [5] HUANG S, ZHANG J, SCHONFELD D, et al. Two-stage friend recommendation based on network alignment and series-expansion of probabilistic topic model[J]. IEEE Transactions on Multimedia, 2017, 19(6)1314-1326. [6] GUO G, ZHANG J, ZHU F, et al. Factored similarity models with social trust for top-N item recommendation[J]. Knowledge-Based Systems, 2017, 122:17-25. [7] MASSA P, AVESANI P. Trust-aware recommender systems[C] //Proceedings of the 2007 ACM Conference on Recommender Systems. Minneapolis, USA:ACM, 2007:17-24. [8] FELÍCIO C, PAIXAO K, ALVES G, et al. Exploiting social information in pairwise preference recommender system[J]. Journal of Information and Data Management, 2017,7(2):99-115. [9] YANG B, LEI Y, LIU J, et al. Social collaborative filtering by trust[C] //Proceedings of the 23th International Joint Conference on Artificial Intelligence. Beijing, China: AAAI Press, 2013:2747-2753. [10] BAO Y, FANG H, ZHANG J. Leveraging decomposed trust in probabilistic matrix factorization for effective recommendation[C] //Proceedings of 28th AAAI Conference on Artificial Intelligence. Quebec, Canada: AAAI Press, 2014:30-36. [11] LIU J, WU C, LIU W. Bayesian probabilistic matrix factorization with social relations and item contents for recommendation[J]. Decision Support Systems, 2013, 55(3):838-850. [12] MA H, YANG H, LYU M R, et al. Sorec: social recommendation using probabilistic matrix factorization[C] //Proceedings of ACM 17th conference on Information and Knowledge Management CIKM. California, USA: ACM, 2008:931-940. [13] GUO G, ZHANG J, YORKESMITH N. TrustSVD: collaborative filtering with both the explicit and implicit influence of user trust and of item ratings[C] //Proceedings of 29th AAAI Conference on Artificial Intelligence. Texas, USA: AAAI Press, 2015:123-129. [14] BEUTEL A, AKOGLU L, FALOUTSOS C. Graph-Based user behavior modeling: from prediction to fraud detection[C] //Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Sydney, Australia: ACM, 2015:2309-2310. [15] GORI M, PUCCI A, ROMA V, et al. ItemRank: a randomwalk based scoring algorithm for recommendder engines[C] //Proceedings of 20th International Joint Conference on Artificial Intelligence. Hyderabad, India: AAAI Press, 2007,7:2766-2771 [16] MNIH A, SALAKHUTDINOV R. Probabilistic matrix factorization[C] //Proceedings of International Conference on Neural Information Processing Systems, Kitakyushu, Japan:ACM, 2007:1257-1264. [17] SALAKHUTDINOV R, MNIH A. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo[C] //Proceedings of the 25th International Conference on Machine learning. Helsinki, Finland: ACM, 2008:880-887. [18] JING LP, WANG P, YANG L. Sparse probabilistic matrix factorization by Laplace distribution for collaborative filtering[C] //Proceedings of 24th International Joint Conference on Artificial Intelligence. Buenos, Aires: AAAI Press, 2015:1771-1777. [19] BEUTEL A, AHMED A, SMOLA A J. ACCAMS: additive co-clustering to approximate matrices succinctly[C] //Proceedings of the 24th International Conference on World Wide Web. Florence, Italy: ACM, 2015:119-129. [20] JAMALI M, ESTER M. A matrix factorization technique with trust propagation for recommendation in social networks[C] //Proceedings of the fourth ACM Conference on Recommender Systems. Barcelona, Spain:ACM, 2010:135-142. [21] TANG J L, Hu X, Gao H, et al. Exploiting local and global social context for recommendation[C] //Proceedings of the 23th International Joint Conference on Artificial Intelligence. Beijing, China: AAAI Press, 2013:264-269. [22] MARSDEN P V, FRIEDKIN N E. Network studies of social influence[J]. Sociological Methods and Research, 1993, 22(1):127-151. [23] HATHAWAY R J, Bezdek J C. Fuzzy c-means clustering of incomplete data[J]. IEEE Transactions on Systems, Man and Cybernetics: Part B(Cybernetics), 2001, 31(5):735-744. [24] MA H, ZHOU D, LIU C, et al. Recommender systems with social regularization[C] //Proceedings of ACM International Conference on Web Search and Data Mining. HongKong, China: ACM, 2011:287-296. [25] LIU H, JING L, CHENG M. An efficient parallel trustbased recommendation method on multicores[C] //Proceedings of 13th High Performance Graph Data Management and Processing Workshop. Salt Lake, USA: IEEE, 2016:9-16. [26] HERLOCKER J L, KONSTAN J A, TERVEEN L G, et al. Evaluating collaborative filtering recommender systems[J]. ACM Transactions on Information Systems, 2004, 22(1): 5-53. |
[1] | 王鑫,陆静雅,王英. 面向推荐的用户兴趣扩展方法[J]. 山东大学学报(工学版), 2017, 47(2): 71-79. |
[2] | 李朔,石宇良. 基于位置社交网络中地点聚类推荐方法[J]. 山东大学学报(工学版), 2016, 46(3): 44-50. |
[3] | 王爱国,李廉*,杨静,陈桂林. 一种基于Bayesian网络的网页推荐算法[J]. 山东大学学报(工学版), 2011, 41(4): 137-142. |
[4] | 茅琴娇1,冯博琴1,李燕1,2,潘善亮3. 一种基于概念格的用户兴趣预测方法[J]. 山东大学学报(工学版), 2010, 40(5): 159-163. |
|