山东大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (3): 88-95.doi: 10.6040/j.issn.1672-3961.0.2017.427
何正义1,2,曾宪华1,2*,郭姜1,2
HE Zhengyi1,2, ZENG Xianhua1,2*, GUO Jiang1,2
摘要: 针对高斯过程的条件受限玻尔兹曼机(Gaussian-based conditional restricted Boltzmann machine, GCRBM)时序模型可以对单一种类的步态时序数据进行很好的预测,但对多类步态时序数据难以识别和预测的问题,提出一种集成卷积神经网络(convolutional neural network, CNN)和深信网(deep belief network, DBN)的步态识别与模拟方法。利用所有类步态数据训练多个不同结构的CNNs模型,利用多类数据训练多个DBNs模型学习低维特征,并通过低维特征训练多个GCRBMs模型。在步态识别与模拟时,CNNs分类器通过投票法确定步态数据的类别;通过识别到的类所对应的DBNs模型低维特征作为对应GCRBMs模型的输入预测目标数据的后期时序低维特征;利用DBNs重构阶段将后期时序低维特征模拟出步态图像。在CASIA系列步态数据集上的试验结果表明:与支持向量机(support vector machine, SVM)、集成DBN和CNN等方法相比,本研究方法的识别率有一定的提高,提出的模型能够根据步态时序预测结果模拟出真实的步态序列图像,证实了模型的有效性。
中图分类号:
[1] 卢官明, 衣美佳. 步态识别关键技术研究[J]. 计算机技术与发展, 2015, 25(7): 100-106. LU Guanming, YI Meijia. Research on critical techniques in gait recognition[J]. Computer Technology and Development, 2015, 25(7):100-106. [2] 夏时洪, 魏毅, 王兆其. 人体运动模拟综述[J]. 计算机研究与发展, 2010, 47(8): 1354-1361. XIA Shihong, WEI Yi, WANG Zhaoqi. A survey of physics-based human motion simulation[J]. Journal of Computer Research and Development, 2010, 47(8): 1354-1361. [3] TAYLOR G W, HINTON G E, ROWEIS S T. Modeling human motion using binary latent variables[C] //Advances in Neural Information Processing Systems(NIPS 19). Vancouver, BC, Canada: MIT Press, 2007:1345-1352. [4] TAYLOR G W, HINTON G E, ROWEIS S T. Two distributed-state models for generating high-dimensional time series[J]. Journal of Machine Learning Research, 2011, 12(2): 1025-1068. [5] 何正义, 曾宪华,曲省卫,等. 基于集成深度学习的时间序列预测模型[J]. 山东大学学报(工学版),2016,46(6): 40-47. HE Zhengyi, ZENG Xianhua, QU Shengwei, et al. The time series prediction model based on integrated deep learning[J]. Journal of Shandong University(Engineering Science), 2016, 46(6): 40-47. [6] HINTON G E, SALAKHUTDINOV R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. [7] HINTON G E, SALAKHUTDINOV R. Supporting online material for “reducing the dimensionality of data with neural networks”[J]. Science, 2006, 504(5786): 504-507. [8] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. [9] LECUN Y, BENGIO Y, HINTON G E. Deep learning[J]. Nature, 2015, 521(7553): 436-444. [10] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25(2): 2012. [11] ZENG Xianhua, LUO Siwei, WANG Jiao. Auto-associative neural network system for recognition[C] //International Conference on Machine Learning and Cybernetics(ICMLC 2007). Hong Kong, China: IEEE Conference Publications, 2007: 2885-2890. [12] HINTON G E. A practical guide to training restricted Boltzmann machines[J]. Momentum, 2012, 9(1): 599-619. [13] 周若愚. 基于SVR与半监督学习的时间序列预测[D]. 西安: 西安电子科技大学, 2014. ZHOU Ruoyu. A predicting time series model based on support vector regression and semi supervised learning[D]. Xi'an:Xidian University, 2014. [14] 张玉瑞, 陈剑波. 基于RBF神经网络的时间序列预测[J]. 计算机工程与应用, 2005, 41(11): 74-76. ZHANG Yurui, CHEN Jianbo. A predicting time series model based on radial basis function neural network[J]. Computer Engineering and Application, 2005, 41(11): 74-76. [15] 王欣,唐俊,王年. 基于双层卷积神经网络的步态识别算法[J]. 安徽大学学报(自然科学版),2015,39(1): 32-36. WANG Xin, TANG Jun, WANG Nian. Gait recognition based on double-layer convolution neural network[J]. Journal of Anhui University(Natural Science Edition), 2015, 39(1): 32-36. [16] 吴军,肖克聪. 基于深度卷积神经网络的人体动作识别[J]. 华中科技大学学报(自然科学版),2016,44(增刊1): 1-7. WU Jun, XIAO Kecong. Human activity recognition based on deep convolution neural networks[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2016, 44(Suppl.1): 1-7. [17] WU Z, HUANG Y, WANG L, et al. A comprehensive study on cross-view gait based human identification with deep cnns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(2): 209-226. [18] WOLF T, BABAEE M, RIGOLL G. Multi-view gait recognition using 3D convolutional neural networks[C] //IEEE International Conference on Image Processing. Phoenix, AZ, the United states: IEEE, 2016: 4165-4169. [19] ALOTAIBI M, MAHMOOD A. Improved gait recognition based on specialized deep convolutional neural networks[C] //Applied Imagery Pattern Recognition Workshop. Washington, DC, USA: IEEE, 2015:1-7. [20] YU S, TAN D, AN T, et al. A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition[C] //The 18th International Conference on Pattern Recognition. Hong Kong, China: IEEE, 2006: 441-444. |
[1] | 张璞,刘畅,王永. 基于特征融合和集成学习的建议语句分类模型[J]. 山东大学学报(工学版), 2018, 48(5): 47-54. |
[2] | 梁蒙蒙,周涛,夏勇,张飞飞,杨健. 基于PSO-ConvK卷积神经网络的肺部肿瘤图像识别[J]. 山东大学学报(工学版), 2018, 48(5): 77-84. |
[3] | 赵彦霞, 王熙照. 基于SVD和DCNN的彩色图像多功能零水印算法[J]. 山东大学学报(工学版), 2018, 48(3): 25-33. |
[4] | 谢志峰,吴佳萍,马利庄. 基于卷积神经网络的中文财经新闻分类方法[J]. 山东大学学报(工学版), 2018, 48(3): 34-39. |
[5] | 徐姗姗,刘应安*,徐昇. 基于卷积神经网络的木材缺陷识别[J]. 山东大学学报(工学版), 2013, 43(2): 23-28. |
|