您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (3): 88-95.doi: 10.6040/j.issn.1672-3961.0.2017.427

• • 上一篇    下一篇

一种集成卷积神经网络和深信网的步态识别与模拟方法

何正义1,2,曾宪华1,2*,郭姜1,2   

  1. 1. 重庆邮电大学计算机科学与技术学院, 重庆 400065;2. 计算智能重庆市重点实验室, 重庆 400065
  • 收稿日期:2017-08-29 出版日期:2018-06-20 发布日期:2017-08-29
  • 通讯作者: 曾宪华(1973—),男,四川攀枝花人,教授,博士,主要研究方向为计算机视觉和流形学习. E-mail: zengxh@cqupt.edu.cn E-mail:hzy459176895@sina.com
  • 作者简介:何正义(1991—),男,重庆开县人,硕士研究生,主要研究方向为深度学习. E-mail:hzy459176895@sina.com
  • 基金资助:
    国家自然科学基金资助项目(61672120);重庆市基础科学与前沿技术研究资助项目(cstcjcyjBX0037,cstc2015jcyja40036)

An ensemble method with convolutional neural network and deep belief network for gait recognition and simulation

HE Zhengyi1,2, ZENG Xianhua1,2*, GUO Jiang1,2   

  1. 1. College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
    2. Chongqing Key Laboratory of Computational Intelligence, Chongqing 400065, China
  • Received:2017-08-29 Online:2018-06-20 Published:2017-08-29

摘要: 针对高斯过程的条件受限玻尔兹曼机(Gaussian-based conditional restricted Boltzmann machine, GCRBM)时序模型可以对单一种类的步态时序数据进行很好的预测,但对多类步态时序数据难以识别和预测的问题,提出一种集成卷积神经网络(convolutional neural network, CNN)和深信网(deep belief network, DBN)的步态识别与模拟方法。利用所有类步态数据训练多个不同结构的CNNs模型,利用多类数据训练多个DBNs模型学习低维特征,并通过低维特征训练多个GCRBMs模型。在步态识别与模拟时,CNNs分类器通过投票法确定步态数据的类别;通过识别到的类所对应的DBNs模型低维特征作为对应GCRBMs模型的输入预测目标数据的后期时序低维特征;利用DBNs重构阶段将后期时序低维特征模拟出步态图像。在CASIA系列步态数据集上的试验结果表明:与支持向量机(support vector machine, SVM)、集成DBN和CNN等方法相比,本研究方法的识别率有一定的提高,提出的模型能够根据步态时序预测结果模拟出真实的步态序列图像,证实了模型的有效性。

关键词: 步态识别与模拟, 卷积神经网络, 基于高斯过程的条件受限玻尔兹曼机, 深信网, 时序模型

Abstract: The Gaussian-based conditional restricted Boltzmann machine(GCRBM)time series model could efficiently predict for single type of gait time series data, but the model could not make accurate recognition and prediction for multi-category gait time series data. To solve the problem above, an ensemble/integrated method with convolutional neural network(CNN)and deep belief network(DBN)for gait recognition and simulation was proposed. Multiple CNNs models with different structures were trained by all the gait data. Multiple DBNs models corresponding to the multi-category data were trained to study low dimensional features, and corresponding to train multiple GCRBMs models through the low dimensional features. In the step of recognition and simulation, model will identify the class of gait data with all CNNs classifiers by the “minority-obeying” voting strategy, then the low-dimensional feature of the DBNs model corresponding to the identified class was used as the input of the corresponding GCRBMs model to predict the late timing low-dimensional feature of the target data. The gait images could be reconstructed by the corresponding DBNs model. Compared with the method of support vector machine(SVM), integrated DBN and CNN, the proposed method’s gait recognition rate was improved based on CASIA gait datasets. Moreover, the predicting result could be simulated to the true gait sequences by the proposed method, which demonstrated the validity of the model.

Key words: gait recognition and simulation, convolutional neural network(CNN), deep belief networks(DBN), time series model, Gaussian-based conditional restricted Boltzmann machine(GCRBM)

中图分类号: 

  • TP181
[1] 卢官明, 衣美佳. 步态识别关键技术研究[J]. 计算机技术与发展, 2015, 25(7): 100-106. LU Guanming, YI Meijia. Research on critical techniques in gait recognition[J]. Computer Technology and Development, 2015, 25(7):100-106.
[2] 夏时洪, 魏毅, 王兆其. 人体运动模拟综述[J]. 计算机研究与发展, 2010, 47(8): 1354-1361. XIA Shihong, WEI Yi, WANG Zhaoqi. A survey of physics-based human motion simulation[J]. Journal of Computer Research and Development, 2010, 47(8): 1354-1361.
[3] TAYLOR G W, HINTON G E, ROWEIS S T. Modeling human motion using binary latent variables[C] //Advances in Neural Information Processing Systems(NIPS 19). Vancouver, BC, Canada: MIT Press, 2007:1345-1352.
[4] TAYLOR G W, HINTON G E, ROWEIS S T. Two distributed-state models for generating high-dimensional time series[J]. Journal of Machine Learning Research, 2011, 12(2): 1025-1068.
[5] 何正义, 曾宪华,曲省卫,等. 基于集成深度学习的时间序列预测模型[J]. 山东大学学报(工学版),2016,46(6): 40-47. HE Zhengyi, ZENG Xianhua, QU Shengwei, et al. The time series prediction model based on integrated deep learning[J]. Journal of Shandong University(Engineering Science), 2016, 46(6): 40-47.
[6] HINTON G E, SALAKHUTDINOV R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
[7] HINTON G E, SALAKHUTDINOV R. Supporting online material for “reducing the dimensionality of data with neural networks”[J]. Science, 2006, 504(5786): 504-507.
[8] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.
[9] LECUN Y, BENGIO Y, HINTON G E. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[10] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25(2): 2012.
[11] ZENG Xianhua, LUO Siwei, WANG Jiao. Auto-associative neural network system for recognition[C] //International Conference on Machine Learning and Cybernetics(ICMLC 2007). Hong Kong, China: IEEE Conference Publications, 2007: 2885-2890.
[12] HINTON G E. A practical guide to training restricted Boltzmann machines[J]. Momentum, 2012, 9(1): 599-619.
[13] 周若愚. 基于SVR与半监督学习的时间序列预测[D]. 西安: 西安电子科技大学, 2014. ZHOU Ruoyu. A predicting time series model based on support vector regression and semi supervised learning[D]. Xi'an:Xidian University, 2014.
[14] 张玉瑞, 陈剑波. 基于RBF神经网络的时间序列预测[J]. 计算机工程与应用, 2005, 41(11): 74-76. ZHANG Yurui, CHEN Jianbo. A predicting time series model based on radial basis function neural network[J]. Computer Engineering and Application, 2005, 41(11): 74-76.
[15] 王欣,唐俊,王年. 基于双层卷积神经网络的步态识别算法[J]. 安徽大学学报(自然科学版),2015,39(1): 32-36. WANG Xin, TANG Jun, WANG Nian. Gait recognition based on double-layer convolution neural network[J]. Journal of Anhui University(Natural Science Edition), 2015, 39(1): 32-36.
[16] 吴军,肖克聪. 基于深度卷积神经网络的人体动作识别[J]. 华中科技大学学报(自然科学版),2016,44(增刊1): 1-7. WU Jun, XIAO Kecong. Human activity recognition based on deep convolution neural networks[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2016, 44(Suppl.1): 1-7.
[17] WU Z, HUANG Y, WANG L, et al. A comprehensive study on cross-view gait based human identification with deep cnns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(2): 209-226.
[18] WOLF T, BABAEE M, RIGOLL G. Multi-view gait recognition using 3D convolutional neural networks[C] //IEEE International Conference on Image Processing. Phoenix, AZ, the United states: IEEE, 2016: 4165-4169.
[19] ALOTAIBI M, MAHMOOD A. Improved gait recognition based on specialized deep convolutional neural networks[C] //Applied Imagery Pattern Recognition Workshop. Washington, DC, USA: IEEE, 2015:1-7.
[20] YU S, TAN D, AN T, et al. A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition[C] //The 18th International Conference on Pattern Recognition. Hong Kong, China: IEEE, 2006: 441-444.
[1] 张璞,刘畅,王永. 基于特征融合和集成学习的建议语句分类模型[J]. 山东大学学报(工学版), 2018, 48(5): 47-54.
[2] 梁蒙蒙,周涛,夏勇,张飞飞,杨健. 基于PSO-ConvK卷积神经网络的肺部肿瘤图像识别[J]. 山东大学学报(工学版), 2018, 48(5): 77-84.
[3] 赵彦霞, 王熙照. 基于SVD和DCNN的彩色图像多功能零水印算法[J]. 山东大学学报(工学版), 2018, 48(3): 25-33.
[4] 谢志峰,吴佳萍,马利庄. 基于卷积神经网络的中文财经新闻分类方法[J]. 山东大学学报(工学版), 2018, 48(3): 34-39.
[5] 徐姗姗,刘应安*,徐昇. 基于卷积神经网络的木材缺陷识别[J]. 山东大学学报(工学版), 2013, 43(2): 23-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!